1. |
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nature Reviews Materials, 2020, 5(8): 584-603.
|
2. |
张天蔚, 刘宇宸, 王韦丹, 等. 生物可降解锌合金作为骨植入材料的研究现状和进展. 生物医学工程学杂志, 2023, 40(3): 589-594, 601.
|
3. |
Han HS, Jun I, Seok HK, et al. Biodegradable magnesium alloys promote angio-osteogenesis to enhance bone repair. Adv Sci (Weinh), 2020, 7(15): 2000800. doi: 10.1002/advs.202000800.
|
4. |
李立衡, 彭明军, 段永华, 等. 生物可降解锌基合金的研究进展. 工业微生物, 2024, 54(1): 51-53.
|
5. |
Kang JH, Kaneda J, Jang JG, et al. The influence of electron beam sterilization on in vivo degradation of β-TCP/PCL of different composite ratios for bone tissue engineering. Micromachines (Basel), 2020, 11(3): 273. doi: 10.3390/mi11030273.
|
6. |
Barthelat F. Growing a synthetic mollusk shell. Science, 2016, 354(6308): 32-33.
|
7. |
Yarger JL, Cherry BR, van der Vaart A. Uncovering the structure-function relationship in spider silk. Nature Reviews Materials, 2018, 3(3). doi: 10.1038/natrevmats.2018.8.
|
8. |
van Beek JD, Beaulieu L, Schäfer H, et al. Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk. Nature, 2000, 405(6790): 1077-1079.
|
9. |
Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature, 2002, 418(6899): 741. doi: 10.1038/418741a.
|
10. |
李佳, 王勃翔, 霍雨心, 等. 纳米改性制备温敏响应性柞蚕丝织物. 丝绸, 2022, 59(10): 20-26.
|
11. |
杨鑫, 张昕, 潘志娟. 天然高聚物基手术缝合线的研究现状. 丝绸, 2023, 60(3): 1-7.
|
12. |
Guo C, Li C, Vu HV, et al. Thermoplastic moulding of regenerated silk. Nat Mater, 2020, 19(1): 102-108.
|
13. |
Zhu Z, Ling S, Yeo J, et al. High-strength, durable all-silk fibroin hydrogels with versatile processability toward multifunctional applications. Adv Funct Mater, 2018, 28(10): 1704757. doi: 10.1002/adfm.201704757.
|
14. |
Li C, Guo C, Fitzpatrick V, et al. Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials, 2019, 5(1): 61-81.
|
15. |
Lu L, Liu X, Sun Y, et al. Silk-fabric reinforced silk for artificial bones. Adv Mater, 2024, 36(23): e2308748. doi: 10.1002/adma.202308748.
|
16. |
Pobloth AM, Checa S, Razi H, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med, 2018, 10(423): eaam8828. doi: 10.1126/scitranslmed.aam8828.
|
17. |
Yang H, Jia B, Zhang Z, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun, 2020, 11(1): 401. doi: 10.1038/s41467-019-14153-7.
|
18. |
柯嵩, 于利, 何宜谦. 老年股骨近端骨折的生物力学特性及临床应用. 中国骨质疏松杂志, 2022, 28(7): 1082-1086.
|
19. |
Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials, 2017, 112: 287-302.
|
20. |
Narayanan G, Vernekar VN, Kuyinu EL, et al. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev, 2016, 107: 247-276.
|
21. |
Petre DG, Leeuwenburgh SCG. The use of fibers in bone tissue engineering. Tissue Eng Part B Rev, 2022, 28(1): 141-159.
|
22. |
朱德举, 李新亮, 李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响. 复合材料学报, 2022, 39(1): 322-334.
|
23. |
郝妙妙, 李丽丽, 付应彭, 等. PDA/纳米TiO2改性超疏水蚕丝织物的制备及性能. 印染, 2023, 49(8): 10-13.
|
24. |
Zhang Y, Sheng R, Chen J, et al. Silk fibroin and sericin differentially potentiate the paracrine and regenerative functions of stem cells through multiomics analysis. Adv Mater, 2023, 35(20): e2210517. doi: 10.1002/adma.202210517.
|
25. |
Madappura AP, Madduri S. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Comput Struct Biotechnol J, 2023, 21: 4868-4886.
|
26. |
Vyas C, Zhang J, Øvrebø Ø, et al. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111433. doi: 10.1016/j.msec.2020.111433.
|