1. |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要. 中国循环杂志, 2019, 34(3): 209-220.
|
2. |
Solo K, Lavi S, Kabali C, et al. Antithrombotic treatment after coronary artery bypass graft surgery: Systematic review and network meta-analysis. BMJ, 2019, 367: I5476.
|
3. |
Gaudino M, Antoniades C, Benedetto U, et al. Mechanisms, consequences, and prevention of coronary graft failure. Circulation, 2017, 136(18): 1749-1764.
|
4. |
de Vries MR, Simons KH, Jukema JW, et al. Vein graft failure: From pathophysiology to clinical outcomes. Nat Rev Cardiol, 2016, 13(8): 451-470.
|
5. |
Harskamp RE, Lopes RD, Baisden CE, et al. Saphenous vein graft failure after coronary artery bypass surgery: Pathophysiology, management, and future directions. Ann Surg, 2013, 257(5): 824-833.
|
6. |
Owens CD, Gasper WJ, Rahman AS, et al. Vein graft failure. J Vasc Surg, 2015, 61(1): 203-216.
|
7. |
张洪伟, 肖正华, 张尔永, 等. 血管外支架防治自体静脉桥失效的研究进展. 中华实验外科杂志, 2015, 32(11): 2903-2905.
|
8. |
McKavanagh P, Yanagawa B, Zawadowski G, et al. Management and prevention of saphenous vein graft failure: A review. Cardiol Ther, 2017, 6(2): 203-223.
|
9. |
Wang D, Uhrin P, Mocan A, et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv, 2018, 36(6): 1586-1607.
|
10. |
Uhrin P, Wang D, Mocan A, et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 2: Natural products inhibiting proliferation. Biotechnol Adv, 2018, 36(6): 1608-1621.
|
11. |
Frismantiene A, Philippova M, Erne P, et al. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal, 2018, 52: 48-64.
|
12. |
Pellet-Many C, Frankel P, Evans IM, et al. Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. Biochem J, 2011, 435(3): 609-618.
|
13. |
Pellet-Many C, Mehta V, Fields L, et al. Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury. Cardiovasc Res, 2015, 108(2): 288-298.
|
14. |
Kofler N, Simons M. The expanding role of neuropilin: Regulation of transforming growth factor-β and platelet-derived growth factor signaling in the vasculature. Curr Opin Hematol, 2016, 23(3): 260-267.
|
15. |
张洪伟, 古君, 张尔永, 等. BMP4在合并糖尿病的冠状动脉旁路移植术患者原位静脉桥病变中的作用. 四川大学学报(医学版), 2016, 47(5): 738-742.
|
16. |
方登峰, 张洪伟, 古君, 等. 骨形态发生蛋白-4在高糖环境下静脉桥增殖重构进程中的作用研究. 四川大学学报(医学版), 2017, 48(5): 710-715.
|
17. |
Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev, 2004, 15(4): 237-254.
|
18. |
Ouyang L, Zhang K, Chen J, et al. Roles of platelet-derived growth factor in vascular calcification. J Cell Physiol, 2018, 233(4): 2804-2814.
|
19. |
Wang C, Liu Y, He D. Diverse effects of platelet-derived growth factor-BB on cell signaling pathways. Cytokine, 2019, 113: 13-20.
|
20. |
Huang B, Dreyer T, Heidt M, et al. Insulin and local growth factor PDGF induce intimal hyperplasia in bypass graft culture models of saphenous vein and internal mammary artery. Eur J Cardiothorac Surg, 2002, 21(6): 1002-1008.
|
21. |
Lu QB, Wan MY, Wang PY, et al. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol, 2018, 14: 656-668.
|
22. |
Dong X, Hu H, Fang Z, et al. CTRP6 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration. Biomed Pharmacother, 2018, 103: 844-850.
|
23. |
Yang J, Zeng P, Yang J, et al. MicroRNA-24 regulates vascular remodeling via inhibiting PDGF-BB pathway in diabetic rat model. Gene, 2018, 659: 67-76.
|
24. |
Ma X, Jiang C, Li Y, et al. Inhibition effect of tacrolimus and platelet-derived growth factor-BB on restenosis after vascular intimal injury. Biomed Pharmacother, 2017, 93: 180-189.
|
25. |
Yelland T, Djordjevic S. Crystal structure of the neuropilin-1 MAM domain: Completing the neuropilin-1 ectodomain picture. Structure, 2016, 24(11): 2008-2015.
|
26. |
Banerjee S, Sengupta K, Dhar K, et al. Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog, 2006, 45(11): 871-880.
|
27. |
Li H, Zhao J, Liu B, et al. MicroRNA-320 targeting neuropilin 1 inhibits proliferation and migration of vascular smooth muscle cells and neointimal formation. Int J Med Sci, 2019, 16(1): 106-114.
|
28. |
Banerjee S, Mehta S, Haque I, et al. VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis. Biochemistry, 2008, 47(11): 3345-3351.
|
29. |
Liu W, Parikh AA, Stoeltzing O, et al. Upregulation of neuropilin-1 by basic fibroblast growth factor enhances vascular smooth muscle cell migration in response to VEGF. Cytokine, 2005, 32(5): 206-212.
|
30. |
Chai S, Yu Y, Li H, et al. Application of medical adhesive inhibits intimal hyperplasia involving the downregulation of ERK1/2 and eNOS levels. Mol Med Rep, 2018, 18(5): 4643-4649.
|
31. |
Li Y, Liu S, Zhang Z, et al. RAGE mediates accelerated diabetic vein graft atherosclerosis induced by combined mechanical stress and AGEs via synergistic ERK activation. PLoS One, 2012, 7(4): e35016.
|
32. |
Bai X, Xi J, Bi Y, et al. TNF-α promotes survival and migration of MSCs under oxidative stress via NF-κB pathway to attenuate intimal hyperplasia in vein grafts. J Cell Mol Med, 2017, 21(9): 2077-2091.
|
33. |
Jia G, Mitra AK, Gangahar DM, et al. Insulin-like growth factor-1 induces phosphorylation of PI3K-Akt/PKB to potentiate proliferation of smooth muscle cells in human saphenous vein. Exp Mol Pathol, 2010, 89(1): 20-26.
|
34. |
Peng CY, Pan SL, Huang YW, et al. Baicalein attenuates intimal hyperplasia after rat carotid balloon injury through arresting cell-cycle progression and inhibiting ERK, Akt, and NF-kappaB activity in vascular smooth-muscle cells. Naunyn Schmiedebergs Arch Pharmacol, 2008, 378(6): 579-588.
|