1. |
Michalski MH, Ross JS. The shape of things to come: 3D printing in medicine. JAMA, 2014, 312(21): 2213-2214.
|
2. |
Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: Sound ideas to touch a heart. J Am Soc Echocardiogr, 2015, 28(4): 398-403.
|
3. |
Ventola CL. Medical applications for 3D printing: Current and projected uses. P T, 2014, 39(10): 704-711.
|
4. |
Nasis A, Mottram PM, Cameron JD, et al. Current and evolving clinical applications of multidetector cardiac CT in assessment of structural heart disease. Radiology, 2013, 267(1): 11-25.
|
5. |
Vukicevic M, Mosadegh B, Min JK, et al. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging, 2017, 10(2): 171-184.
|
6. |
Byrne N, Velasco Forte M, Tandon A, et al. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis, 2016, 5: 2048004016645467.
|
7. |
陈思楷, 周青, 宋宏宁, 等. 多模态医学影像融合技术 3D 打印心脏模型方法学及精准度研究. 中华超声影像学杂志, 2018, 27(11): 924-930.
|
8. |
Giannopoulos AA, Steigner ML, George E, et al. Cardiothoracic applications of 3-dimensional printing. J Thorac Imaging, 2016, 31(5): 253-272.
|
9. |
Binder RK, Dweck M, Prendergast B. The year in cardiology: Valvular heart disease. Eur Heart J, 2020, 41(8): 912-920.
|
10. |
Cui H, Miao S, Esworthy T, et al. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev, 2018, 132: 252-269.
|
11. |
高强, 庄建, 岑坚正, 等. 3D 打印技术在复杂先天性心脏病外科诊疗中的应用. 中国胸心血管外科临床杂志, 2018, 25(8): 654-658.
|
12. |
Hann SY, Cui H, Esworthy T, et al. Recent advances in 3D printing: Vascular network for tissue and organ regeneration. Transl Res, 2019, 211: 46-63.
|
13. |
Singh D, Singh D, Han SS, et al. 3D printing of scaffold for cells delivery: Advances in skin tissue engineering. Polymers (Basel), 2016, 8(1): 19.
|
14. |
Dragone V, Sans V, Rosnes MH, et al. 3D-printed devices for continuous-flow organic chemistry. Beilstein J Org Chem, 2013, 9: 951-959.
|
15. |
Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: A population-based study. Lancet, 2006, 368(9540): 1005-1011.
|
16. |
Wang DD, Gheewala N, Shah R, et al. Three-dimensional printing for planning of structural heart interventions. Interv Cardiol Clin, 2018, 7(3): 415-423.
|
17. |
Rojas GM, Gálvez M, Potler NV, et al. Stereoscopic three-dimensional visualization applied to multimodal brain images: Clinical applications and a functional connectivity atlas. Front Neurosci, 2014, 8: 328.
|
18. |
Daemen JHT, Heuts S, Olsthoorn JR, et al. Mitral valve modelling and three-dimensional printing for planning and simulation of mitral valve repair. Eur J Cardiothorac Surg, 2019, 55(3): 543-551.
|
19. |
Hernández-Enríquez M, Brugaletta S, Andreu D, et al. Three-dimensional printing of an aortic model for transcatheter aortic valve implantation: Possible clinical applications. Int J Cardiovasc Imaging, 2017, 33(2): 283-285.
|
20. |
Valverde I, Sarnago F, Prieto R, et al. Three-dimensional printing in vitro simulation of percutaneous pulmonary valve implantation in large right ventricular outflow tract. Eur Heart J, 2017, 38(16): 1262-1263.
|
21. |
Wamala I, Brüning J, Dittmann J, et al. Simulation of a right anterior thoracotomy access for aortic valve replacement using a 3D printed model. Innovations (Phila), 2019, 14(5): 428-435.
|
22. |
Benke K, Barabás JI, Daróczi L, et al. Routine aortic valve replacement followed by a myriad of complications: Role of 3D printing in a difficult cardiac surgical case. J Thorac Dis, 2017, 9(11): E1021-E1024.
|
23. |
Basman C, Seetharam K, Pirelli L, et al. Transcatheter aortic valve-in-valve-in-valve implantation with three-dimensional printing guidance: A case report. J Card Surg, 2020, 35(7): 1676-1680.
|
24. |
Qian Z, Wang K, Liu S, et al. Quantitative prediction of paravalvular leak in transcatheter aortic valve replacement based on tissue-mimicking 3D printing. JACC Cardiovasc Imaging, 2017, 10(7): 719-731.
|
25. |
Kim MS, Hansgen AR, Wink O, et al. Rapid prototyping: A new tool in understanding and treating structural heart disease. Circulation, 2008, 117(18): 2388-2394.
|
26. |
Booher AM, Bach DS. Exercise hemodynamics in valvular heart disease. Curr Cardiol Rep, 2011, 13(3): 226-233.
|
27. |
王浩, 张斌, 宋宏宁, 等. 超声影像数据源 3D 打印结合模拟循环系统制作体外动态二尖瓣模型的可行性研究. 中华超声影像学杂志, 2020, 29(3): 206-212.
|
28. |
Ferrari G, Balasubramanian P, Tubaldi E, et al. Experiments on dynamic behaviour of a Dacron aortic graft in a mock circulatory loop. J Biomech, 2019, 86: 132-140.
|
29. |
Harb SC, Xu B, Klatte R, et al. Haemodynamic assessment of severe aortic stenosis using a three-dimensional (3D) printed model incorporating a flow circuit. Heart Lung Circ, 2018, 27(11): e105-e107.
|
30. |
Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng, 2017, 45(1): 195-209.
|
31. |
Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun, 2014, 5: 3935.
|
32. |
Loo Y, Lakshmanan A, Ni M, et al. Peptide bioink: Self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett, 2015, 15(10): 6919-6925.
|
33. |
Hockaday LA, Kang KH, Colangelo NW, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 2012, 4(3): 035005.
|
34. |
Sodian R, Hoerstrup SP, Sperling JS, et al. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation, 2000, 102(19 Suppl 3): Ⅲ22-Ⅲ29.
|
35. |
Sodian R, Schmauss D, Markert M, et al. Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann Thorac Surg, 2008, 85(6): 2105-2108.
|
36. |
Sodian R, Loebe M, Hein A, et al. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J, 2002, 48(1): 12-16.
|
37. |
Duan B, Hockaday LA, Kang KH, et al. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 2013, 101(5): 1255-1264.
|
38. |
Duan B, Hockaday LA, Kapetanovic E, et al. Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomater, 2013, 9(8): 7640-7650.
|
39. |
Duan B, Kapetanovic E, Hockaday LA, et al. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater, 2014, 10(5): 1836-1846.
|
40. |
Mahmood F, Owais K, Taylor C, et al. Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging, 2015, 8(2): 227-229.
|
41. |
Mashari A, Knio Z, Jeganathan J, et al. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: A clinical application of three-dimensional printing. J Cardiothorac Vasc Anesth, 2016, 30(5): 1278-1285.
|
42. |
加丹, 周青, 邓倾. 3D 打印心血管功能流体模型的研究进展. 中华心血管病杂志, 2018, 46(4): 318-322.
|
43. |
Rybicki FJ. Medical 3D printing and the physician-artist. Lancet, 2018, 391(10121): 651-652.
|