- 1. Department of Caridiovascular Surgery, Dalian Municipal Central Hospital, Dalian, 116000, Liaoning, P. R. China;
- 2. Department of Cardiovascular Medicine, Dalian Municipal Central Hospital, Dalian, 116000, Liaoning, P. R. China;
Aortic valve disease is one of the major diseases threatening human health. Transcatheter aortic valve replacement (TAVR) is a new treatment for aortic disease. Preoperative evaluation is of great significance to the successful operation and the long-term quality of life of patients. The 3D printing technology can fully simulate the cardiac anatomy of patients, create personalized molds for patients, improve surgical efficiency, reduce surgical time and surgical trauma, and thus achieve better surgical results. In this review, the relevant literatures were searched, and the evaluation effect of 3D printing technology on the operation of TAVR was reviewed, so as to provide clinical reference.
Citation: ZHUANG Xijing, WANG Wenjun, LI Shijun. Evaluation of 3D printing technology before transcatheter aortic valve replacement surgery. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2022, 29(3): 377-383. doi: 10.7507/1007-4848.202010101 Copy
1. | Edwards WD. The changing spectrum of valvular heart disease pathology. In: Braunwald E, ed. Harrison's Advances in Cardiology. New York: McGraw-Hill Professional, 2002. 317-323. |
2. | Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: Pathogenesis, disease progression, and treatment strategies. Circulation, 2005, 111(24): 3316-3326. |
3. | Pan W, Zhou D, Cheng L, et al. Candidates for transcatheter aortic valve implantation may be fewer in China. Int J Cardiol, 2013, 168(5): e133-e134. |
4. | Pan W, Zhou D, Cheng L, et al. Aortic regurgitation is more prevalent than aortic stenosis in Chinese elderly population: Implications for transcatheter aortic valve replacement. Int J Cardiol, 2015, 201: 547-548. |
5. | Iung B, Cachier A, Baron G, et al. Decision-making in elderly patients with severe aortic stenosis: Why are so many denied surgery? Eur Heart J, 2005, 26(24): 2714-2720. |
6. | Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation, 2002, 106(24): 3006-3008. |
7. | Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med, 2011, 364(23): 2187-2198. |
8. | Lancellotti P, Kulbertus H. Transcatheter aortic valve implantation versus surgical aortic valve replacement in intermediate-risk patients with severe symptomatic aortic stenosis. Rev Med Liege, 2016, 71(6): 302-307. |
9. | Writing Committee Members, Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: Executive summary: A report of The American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am Coll Cardiol, 2021, 77(4): 450-500. |
10. | Krumsdorf U, Haass M, Pirot M, et al. Technical challenge of transfemoral aortic valve implantation in a patient with severe aortic regurgitation. Circ Cardiovasc Interv, 2011, 4(2): 210-211. |
11. | Yoon SH, Schmidt T, Bleiziffer S, et al. Transcatheter aortic valve replacement in pure native aortic valve regurgitation. J Am Coll Cardiol, 2017, 70(22): 2752-2763. |
12. | 中国医师协会心血管内科医师分会结构性心脏病专业委员会. 经导管主动脉瓣置换术中国专家共识(2020 更新版). 中国介入心脏病学杂志, 2020, 28(6): 301-309. |
13. | 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告 2019》 要点解读. 中国心血管杂志, 2020, 25(5): 401-410. |
14. | 中华医学会心血管病学分会结构性心脏病学组中国医师协会心血管内科医师分会结构性心脏病专业委员会. 中国经导管主动脉瓣置换术临床路径专家共识. 中国介入心脏病学杂志, 2018, 26(12): 661-668. |
15. | Messika-Zeitoun D, Serfaty JM, Brochet E, et al. Multimodal assessment of the aortic annulus diameter: Implications for transcatheter aortic valve implantation. J Am Coll Cardiol, 2010, 55(3): 186-194. |
16. | Tamburino C, Capodanno D, Ramondo A, et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation, 2011, 123(3): 299-308. |
17. | Khalique OK, Hahn RT, Gada H, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2014, 7(8): 885-894. |
18. | Ribeiro HB, Webb JG, Makkar RR, et al. Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: Insights from a large multicenter registry. J Am Coll Cardiol, 2013, 62(17): 1552-1562. |
19. | Khatri PJ, Webb JG, Rodés-Cabau J, et al. Adverse effects associated with transcatheter aortic valve implantation: A meta-analysis of contemporary studies. Ann Intern Med, 2013, 158(1): 35-46. |
20. | Auffret V, Lefevre T, Van Belle E, et al. Temporal trends in transcatheter aortic valve replacement in France: FRANCE 2 to FRANCE TAVI. J Am Coll Cardiol, 2017, 70(1): 42-55. |
21. | Achenbach S, Delgado V, Hausleiter J, et al. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr, 2012, 6(6): 366-380. |
22. | Ussia GP, Barbanti M, Sarkar K, et al. Accuracy of intracardiac echocardiography for aortic root assessment in patients undergoing transcatheter aortic valve implantation. Am Heart J, 2012, 163(4): 684-689. |
23. | Sherif MA, Ince H, Maniuc O, et al. Two-dimensional transesophageal echocardiography for aortic annular sizing in patients undergoing transcatheter aortic valve implantation. BMC Cardiovasc Disord, 2015, 15: 181. |
24. | Mehrotra P, Flynn AW, Jansen K, et al. Differential left ventricular outflow tract remodeling and dynamics in aortic stenosis. J Am Soc Echocardiogr, 2015, 28(11): 1259-1266. |
25. | Saitoh T, Shiota M, Izumo M, et al. Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography. Am J Cardiol, 2012, 109(11): 1626-1631. |
26. | Shiran A, Adawi S, Ganaeem M, et al. Accuracy and reproducibility of left ventricular outflow tract diameter measurement using transthoracic when compared with transesophageal echocardiography in systole and diastole. Eur J Echocardiogr, 2009, 10(2): 319-324. |
27. | Muraru D, Badano LP, Vannan M, et al. Assessment of aortic valve complex by three-dimensional echocardiography: A framework for its effective application in clinical practice. Eur Heart J Cardiovasc Imaging, 2012, 13(7): 541-555. |
28. | Ng AC, Delgado V, van der Kley F, et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imaging, 2010, 3(1): 94-102. |
29. | 刘娟,尹立雪. 心房颤动的超声心动图研究进展. 实用医院临床杂志, 2020, 17(3): 236-239. |
30. | 陈翔, 秦永文. 心腔内超声在心血管介入治疗中的应用. 中国介入心脏病学杂志, 2011, 19(3): 166-168. |
31. | Salem MI, Makaryus AN, Kort S, et al. Intracardiac echocardiography using the AcuNav ultrasound catheter during percutaneous balloon mitral valvuloplasty. J Am Soc Echocardiogr, 2002, 15(12): 1533-1537. |
32. | Bartel T, Bonaros N, Müller L, et al. Intracardiac echocardiography: A new guiding tool for transcatheter aortic valve replacement. J Am Soc Echocardiogr, 2011, 24(9): 966-975. |
33. | Husser O, Holzamer A, Resch M, et al. Prosthesis sizing for transcatheter aortic valve implantation — comparison of three dimensional transesophageal echocardiography with multislice computed tomography. Int J Cardiol, 2013, 168(4): 3431-3438. |
34. | Tsuneyoshi H, Komiya T, Shimamoto T. Accuracy of aortic annulus diameter measurement: Comparison of multi-detector CT, two- and three-dimensional echocardiography. J Card Surg, 2016, 31(1): 18-22. |
35. | Schultz C, Moelker A, Tzikas A, et al. The use of MSCT for the evaluation of the aortic root before transcutaneous aortic valve implantation: The Rotterdam approach. EuroIntervention, 2010, 6(4): 505-511. |
36. | Giannopoulos AA, Mitsouras D, Yoo SJ, et al. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol, 2016, 13(12): 701-718. |
37. | Gómez-Ciriza G, Hussain T, Gómez-Cía T, et al. Potential of 3D-printed models in planning structural interventional procedures. Interv Cardiol, 2015, 7(4): 343-350. |
38. | Eltorai AE, Nguyen E, Daniels AH. Three-dimensional printing in orthopedic surgery. Orthopedics, 2015, 38(11): 684-687. |
39. | Tack P, Victor J, Gemmel P, et al. 3D-printing techniques in a medical setting: A systematic literature review. Biomed Eng Online, 2016, 15(1): 115. |
40. | Al Jabbari O, Abu Saleh WK, Patel AP, et al. Use of three-dimensional models to assist in the resection of malignant cardiac tumors. J Card Surg, 2016, 31(9): 581-583. |
41. | Chaowu Y, Hua L, Xin S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: In vitro trial occlusion based on a personalized heart model. Circulation, 2016, 133(17): e608-e610. |
42. | Bartel T, Rivard A, Jimenez A, et al. Three-dimensional printing for quality management in device closure of interatrial communications. Eur Heart J Cardiovasc Imaging, 2016, 17(9): 1069. |
43. | Pellegrino PL, Fassini G, DI Biase M, et al. Left atrial appendage closure guided by 3D printed cardiac reconstruction: Emerging directions and future trends. J Cardiovasc Electrophysiol, 2016, 27(6): 768-771. |
44. | Maragiannis D, Jackson MS, Igo SR, et al. Replicating patientspecific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging, 2015, 8(10): e003626. |
45. | Little SH, Vukicevic M, Avenatti E, et al. 3D Printed modeling for patient-specific mitral valve intervention: Repair with a clip and a plug. JACC Cardiovasc Interv, 2016, 9(9): 973-975. |
46. | Yuan D, Luo H, Yang H, et al. Precise treatment of aortic aneurysm by three-dimensional printing and simulation before endovascular intervention. Sci Rep, 2017, 7(1): 795. |
47. | Lee M, Moharem-Elgamal S, Beckingham R, et al. Evaluating 3D-printed models of coronary anomalies: A survey among clinicians and researchers at a university hospital in the UK. BMJ Open, 2019, 9(3): e025227. |
48. | Jung JI, Koh YS, Chang K. 3D printing model before and after transcatheter aortic valve implantation for a better understanding of the anatomy of aortic root. Korean Circ J, 2016, 46(4): 588-589. |
49. | Cai T, Cheezum MK, Giannopoulos AA, et al. Accuracy of 3D printed models of the aortic valve complex for transcatheter aortic valve replacement (TAVR) planning: Comparison to computed tomographic angiography (CTA). Circulation, 2015, 132(suppl 3): 239. |
50. | Rotman OM, Kovarovic B, Sadasivan C, et al. Realistic vascular replicator for TAVR procedures. Cardiovasc Eng Technol, 2018, 9(3): 339-350. |
51. | Qian Z, Wang K, Liu S, et al. Quantitative prediction of paravalvular leak in transcatheter aortic valve replacement based on tissue-mimicking 3D printing. JACC Cardiovasc Imaging, 2017, 10(7): 719-731. |
52. | Schmauss D, Schmitz C, Bigdeli AK, et al. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg, 2012, 93(2): e31-e33. |
53. | Valverde I, Gomez G, Gonzalez A, et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol Young, 2015, 25(4): 698-704. |
54. | Gallo M, D'Onofrio A, Tarantini G, et al. 3D-printing model for complex aortic transcatheter valve treatment. Int J Cardiol, 2016, 210: 139-140. |
55. | Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr, 2016, 10(1): 28-36. |
56. | Tanaka Y, Aoyama Y, Obama K, et al. Simulation of transcatheter aortic valve replacement and assessment of regurgitation in in-vitro pulsatile model with patient-specific anatomy. Circulation, 2016, 134(suppl): 453. |
57. | Hosny A, Dilley JD, Kelil T, et al. Pre-procedural fit-testing of TAVR valves using parametric modeling and 3D printing. J Cardiovasc Comput Tomogr, 2019, 13(1): 21-30. |
58. | Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med, 2019, 380(18): 1695-1705. |
59. | Lansky AJ, Brown D, Pena C, et al. Neurologic complications of unprotected transcatheter aortic valve implantation (from the Neuro-TAVI Trial). Am J Cardiol, 2016, 118(10): 1519-1526. |
60. | 刘坤, 吕滨, 任心爽, 等. 3D 打印技术应用于经导管主动脉瓣置入术前评估一例. 中华心血管病杂志, 2015, 43(7): 634-635. |
61. | 林加凡. 中国首例 3D 打印技术导航 TAVI 手术在上海完成. 海南医学, 2015, 26(4): 607-607. |
62. | 刘坤, 张茗卉, 吕滨. 应用三维打印技术构建心脏瓣膜病术前主动脉根部模型的可行性研究. 北京生物医学工程, 2019, 38(1): 7-14, 66. |
63. | Qian Z, Wang K, Chang YH, et al. 3D printing of biological tissue-mimicking aortic root using a novel meta-material technique: Potential clinical applications. J Am Coll Cardiol, 2016, 67(13): 7. |
- 1. Edwards WD. The changing spectrum of valvular heart disease pathology. In: Braunwald E, ed. Harrison's Advances in Cardiology. New York: McGraw-Hill Professional, 2002. 317-323.
- 2. Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: Pathogenesis, disease progression, and treatment strategies. Circulation, 2005, 111(24): 3316-3326.
- 3. Pan W, Zhou D, Cheng L, et al. Candidates for transcatheter aortic valve implantation may be fewer in China. Int J Cardiol, 2013, 168(5): e133-e134.
- 4. Pan W, Zhou D, Cheng L, et al. Aortic regurgitation is more prevalent than aortic stenosis in Chinese elderly population: Implications for transcatheter aortic valve replacement. Int J Cardiol, 2015, 201: 547-548.
- 5. Iung B, Cachier A, Baron G, et al. Decision-making in elderly patients with severe aortic stenosis: Why are so many denied surgery? Eur Heart J, 2005, 26(24): 2714-2720.
- 6. Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation, 2002, 106(24): 3006-3008.
- 7. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med, 2011, 364(23): 2187-2198.
- 8. Lancellotti P, Kulbertus H. Transcatheter aortic valve implantation versus surgical aortic valve replacement in intermediate-risk patients with severe symptomatic aortic stenosis. Rev Med Liege, 2016, 71(6): 302-307.
- 9. Writing Committee Members, Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: Executive summary: A report of The American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am Coll Cardiol, 2021, 77(4): 450-500.
- 10. Krumsdorf U, Haass M, Pirot M, et al. Technical challenge of transfemoral aortic valve implantation in a patient with severe aortic regurgitation. Circ Cardiovasc Interv, 2011, 4(2): 210-211.
- 11. Yoon SH, Schmidt T, Bleiziffer S, et al. Transcatheter aortic valve replacement in pure native aortic valve regurgitation. J Am Coll Cardiol, 2017, 70(22): 2752-2763.
- 12. 中国医师协会心血管内科医师分会结构性心脏病专业委员会. 经导管主动脉瓣置换术中国专家共识(2020 更新版). 中国介入心脏病学杂志, 2020, 28(6): 301-309.
- 13. 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告 2019》 要点解读. 中国心血管杂志, 2020, 25(5): 401-410.
- 14. 中华医学会心血管病学分会结构性心脏病学组中国医师协会心血管内科医师分会结构性心脏病专业委员会. 中国经导管主动脉瓣置换术临床路径专家共识. 中国介入心脏病学杂志, 2018, 26(12): 661-668.
- 15. Messika-Zeitoun D, Serfaty JM, Brochet E, et al. Multimodal assessment of the aortic annulus diameter: Implications for transcatheter aortic valve implantation. J Am Coll Cardiol, 2010, 55(3): 186-194.
- 16. Tamburino C, Capodanno D, Ramondo A, et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation, 2011, 123(3): 299-308.
- 17. Khalique OK, Hahn RT, Gada H, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv, 2014, 7(8): 885-894.
- 18. Ribeiro HB, Webb JG, Makkar RR, et al. Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: Insights from a large multicenter registry. J Am Coll Cardiol, 2013, 62(17): 1552-1562.
- 19. Khatri PJ, Webb JG, Rodés-Cabau J, et al. Adverse effects associated with transcatheter aortic valve implantation: A meta-analysis of contemporary studies. Ann Intern Med, 2013, 158(1): 35-46.
- 20. Auffret V, Lefevre T, Van Belle E, et al. Temporal trends in transcatheter aortic valve replacement in France: FRANCE 2 to FRANCE TAVI. J Am Coll Cardiol, 2017, 70(1): 42-55.
- 21. Achenbach S, Delgado V, Hausleiter J, et al. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr, 2012, 6(6): 366-380.
- 22. Ussia GP, Barbanti M, Sarkar K, et al. Accuracy of intracardiac echocardiography for aortic root assessment in patients undergoing transcatheter aortic valve implantation. Am Heart J, 2012, 163(4): 684-689.
- 23. Sherif MA, Ince H, Maniuc O, et al. Two-dimensional transesophageal echocardiography for aortic annular sizing in patients undergoing transcatheter aortic valve implantation. BMC Cardiovasc Disord, 2015, 15: 181.
- 24. Mehrotra P, Flynn AW, Jansen K, et al. Differential left ventricular outflow tract remodeling and dynamics in aortic stenosis. J Am Soc Echocardiogr, 2015, 28(11): 1259-1266.
- 25. Saitoh T, Shiota M, Izumo M, et al. Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography. Am J Cardiol, 2012, 109(11): 1626-1631.
- 26. Shiran A, Adawi S, Ganaeem M, et al. Accuracy and reproducibility of left ventricular outflow tract diameter measurement using transthoracic when compared with transesophageal echocardiography in systole and diastole. Eur J Echocardiogr, 2009, 10(2): 319-324.
- 27. Muraru D, Badano LP, Vannan M, et al. Assessment of aortic valve complex by three-dimensional echocardiography: A framework for its effective application in clinical practice. Eur Heart J Cardiovasc Imaging, 2012, 13(7): 541-555.
- 28. Ng AC, Delgado V, van der Kley F, et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imaging, 2010, 3(1): 94-102.
- 29. 刘娟,尹立雪. 心房颤动的超声心动图研究进展. 实用医院临床杂志, 2020, 17(3): 236-239.
- 30. 陈翔, 秦永文. 心腔内超声在心血管介入治疗中的应用. 中国介入心脏病学杂志, 2011, 19(3): 166-168.
- 31. Salem MI, Makaryus AN, Kort S, et al. Intracardiac echocardiography using the AcuNav ultrasound catheter during percutaneous balloon mitral valvuloplasty. J Am Soc Echocardiogr, 2002, 15(12): 1533-1537.
- 32. Bartel T, Bonaros N, Müller L, et al. Intracardiac echocardiography: A new guiding tool for transcatheter aortic valve replacement. J Am Soc Echocardiogr, 2011, 24(9): 966-975.
- 33. Husser O, Holzamer A, Resch M, et al. Prosthesis sizing for transcatheter aortic valve implantation — comparison of three dimensional transesophageal echocardiography with multislice computed tomography. Int J Cardiol, 2013, 168(4): 3431-3438.
- 34. Tsuneyoshi H, Komiya T, Shimamoto T. Accuracy of aortic annulus diameter measurement: Comparison of multi-detector CT, two- and three-dimensional echocardiography. J Card Surg, 2016, 31(1): 18-22.
- 35. Schultz C, Moelker A, Tzikas A, et al. The use of MSCT for the evaluation of the aortic root before transcutaneous aortic valve implantation: The Rotterdam approach. EuroIntervention, 2010, 6(4): 505-511.
- 36. Giannopoulos AA, Mitsouras D, Yoo SJ, et al. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol, 2016, 13(12): 701-718.
- 37. Gómez-Ciriza G, Hussain T, Gómez-Cía T, et al. Potential of 3D-printed models in planning structural interventional procedures. Interv Cardiol, 2015, 7(4): 343-350.
- 38. Eltorai AE, Nguyen E, Daniels AH. Three-dimensional printing in orthopedic surgery. Orthopedics, 2015, 38(11): 684-687.
- 39. Tack P, Victor J, Gemmel P, et al. 3D-printing techniques in a medical setting: A systematic literature review. Biomed Eng Online, 2016, 15(1): 115.
- 40. Al Jabbari O, Abu Saleh WK, Patel AP, et al. Use of three-dimensional models to assist in the resection of malignant cardiac tumors. J Card Surg, 2016, 31(9): 581-583.
- 41. Chaowu Y, Hua L, Xin S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: In vitro trial occlusion based on a personalized heart model. Circulation, 2016, 133(17): e608-e610.
- 42. Bartel T, Rivard A, Jimenez A, et al. Three-dimensional printing for quality management in device closure of interatrial communications. Eur Heart J Cardiovasc Imaging, 2016, 17(9): 1069.
- 43. Pellegrino PL, Fassini G, DI Biase M, et al. Left atrial appendage closure guided by 3D printed cardiac reconstruction: Emerging directions and future trends. J Cardiovasc Electrophysiol, 2016, 27(6): 768-771.
- 44. Maragiannis D, Jackson MS, Igo SR, et al. Replicating patientspecific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging, 2015, 8(10): e003626.
- 45. Little SH, Vukicevic M, Avenatti E, et al. 3D Printed modeling for patient-specific mitral valve intervention: Repair with a clip and a plug. JACC Cardiovasc Interv, 2016, 9(9): 973-975.
- 46. Yuan D, Luo H, Yang H, et al. Precise treatment of aortic aneurysm by three-dimensional printing and simulation before endovascular intervention. Sci Rep, 2017, 7(1): 795.
- 47. Lee M, Moharem-Elgamal S, Beckingham R, et al. Evaluating 3D-printed models of coronary anomalies: A survey among clinicians and researchers at a university hospital in the UK. BMJ Open, 2019, 9(3): e025227.
- 48. Jung JI, Koh YS, Chang K. 3D printing model before and after transcatheter aortic valve implantation for a better understanding of the anatomy of aortic root. Korean Circ J, 2016, 46(4): 588-589.
- 49. Cai T, Cheezum MK, Giannopoulos AA, et al. Accuracy of 3D printed models of the aortic valve complex for transcatheter aortic valve replacement (TAVR) planning: Comparison to computed tomographic angiography (CTA). Circulation, 2015, 132(suppl 3): 239.
- 50. Rotman OM, Kovarovic B, Sadasivan C, et al. Realistic vascular replicator for TAVR procedures. Cardiovasc Eng Technol, 2018, 9(3): 339-350.
- 51. Qian Z, Wang K, Liu S, et al. Quantitative prediction of paravalvular leak in transcatheter aortic valve replacement based on tissue-mimicking 3D printing. JACC Cardiovasc Imaging, 2017, 10(7): 719-731.
- 52. Schmauss D, Schmitz C, Bigdeli AK, et al. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg, 2012, 93(2): e31-e33.
- 53. Valverde I, Gomez G, Gonzalez A, et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol Young, 2015, 25(4): 698-704.
- 54. Gallo M, D'Onofrio A, Tarantini G, et al. 3D-printing model for complex aortic transcatheter valve treatment. Int J Cardiol, 2016, 210: 139-140.
- 55. Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr, 2016, 10(1): 28-36.
- 56. Tanaka Y, Aoyama Y, Obama K, et al. Simulation of transcatheter aortic valve replacement and assessment of regurgitation in in-vitro pulsatile model with patient-specific anatomy. Circulation, 2016, 134(suppl): 453.
- 57. Hosny A, Dilley JD, Kelil T, et al. Pre-procedural fit-testing of TAVR valves using parametric modeling and 3D printing. J Cardiovasc Comput Tomogr, 2019, 13(1): 21-30.
- 58. Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med, 2019, 380(18): 1695-1705.
- 59. Lansky AJ, Brown D, Pena C, et al. Neurologic complications of unprotected transcatheter aortic valve implantation (from the Neuro-TAVI Trial). Am J Cardiol, 2016, 118(10): 1519-1526.
- 60. 刘坤, 吕滨, 任心爽, 等. 3D 打印技术应用于经导管主动脉瓣置入术前评估一例. 中华心血管病杂志, 2015, 43(7): 634-635.
- 61. 林加凡. 中国首例 3D 打印技术导航 TAVI 手术在上海完成. 海南医学, 2015, 26(4): 607-607.
- 62. 刘坤, 张茗卉, 吕滨. 应用三维打印技术构建心脏瓣膜病术前主动脉根部模型的可行性研究. 北京生物医学工程, 2019, 38(1): 7-14, 66.
- 63. Qian Z, Wang K, Chang YH, et al. 3D printing of biological tissue-mimicking aortic root using a novel meta-material technique: Potential clinical applications. J Am Coll Cardiol, 2016, 67(13): 7.