1. |
Teuteberg JJ, Cleveland JC, Cowger J, et al. The Society of Thoracic Surgeons intermacs 2019 annual report: The changing landscape of devices and indications. Ann Thorac Surg, 2020, 109(3): 649-660.
|
2. |
Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med, 2009, 361(23): 2241-2251.
|
3. |
Hanke JS, Rojas SV, Mahr C, et al. Five-year results of patients supported by HeartMate Ⅱ: Outcomes and adverse events. Eur J Cardiothorac Surg, 2018, 53(2): 422-427.
|
4. |
Schroder JN, Milano CA. A tale of two centrifugal left ventricular assist devices. J Thorac Cardiovasc Surg, 2017, 154(3): 850-852.
|
5. |
Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med, 2017, 376(5): 451-460.
|
6. |
Milano CA, Rogers JG, Tatooles AJ, et al. HVAD: The ENDURANCE supplemental trial. JACC Heart Fail, 2018, 6(9): 792-802.
|
7. |
Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med, 2018, 378(15): 1386-1395.
|
8. |
Colombo PC, Mehra MR, Goldstein DJ, et al. Comprehensive analysis of stroke in the long-term cohort of the MOMENTUM 3 study. Circulation, 2019, 139(2): 155-168.
|
9. |
Barac YD, Wojnarski CM, Junpaparp P, et al. Early outcomes with durable left ventricular assist device replacement using the HeartMate 3. J Thorac Cardiovasc Surg, 2020, 160(1): 132-139.
|
10. |
Goldstein DJ, Naka Y, Horstmanshof D, et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: The multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol, 2020, 5(4): 411-419.
|
11. |
Mehra MR, Naka Y, Uriel N, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med, 2017, 376(5): 440-450.
|
12. |
胡盛寿, 孙寒松, 李立环, 等. FW-Ⅱ轴流泵短期辅助治疗急性左心衰的初步临床评价. 中国循环杂志, 2014, 29(z1): 63-63.
|
13. |
张冬, 杨伯清, 陈海波, 等. CH-VAD左心辅助装置动物体内实验研究. 中国生物医学工程学报, 2016, 35(6): 705-711.
|
14. |
国内首款人工心脏获批上市. 北京生物医学工程, 2019, 38 (5): 522.
|
15. |
张杰民, 刘晓程, 刘志刚, 等. 磁液双悬浮离心血泵左心辅助的动物实验. 中华医学杂志, 2014, 94(22): 1740-1743.
|
16. |
Barge-Caballero E, Almenar-Bonet L, Gonzalez-Vilchez F, et al. Clinical outcomes of temporary mechanical circulatory support as a direct bridge to heart transplantation: A nationwide Spanish registry. Eur J Heart Fail, 2018, 20(1): 178-186.
|
17. |
Truby LK, Farr MA, Garan AR, et al. Impact of bridge to transplantation with continuous-flow left ventricular assist devices on posttransplantation mortality. Circulation, 2019, 140(6): 459-469.
|
18. |
Thomas SS, Zern EK, D'Alessandro DA. The renal challenge with left ventricular assist device therapy—When enough is enough. JAMA Intern Med, 2018, 178(2): 210-211.
|
19. |
Bansal N, Hailpern SM, Katz R, et al. Outcomes associated with left ventricular assist devices among recipients with and without end-stage renal disease. JAMA Intern Med, 2018, 178(2): 204-209.
|
20. |
Starling RC, Estep JD, Horstmanshof DA, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: The ROADMAP study 2-year results. JACC Heart Fail, 2017, 5(7): 518-527.
|
21. |
Kanwar MK, Bailey S, Murali S. Challenges and future directions in left ventricular assist device therapy. Crit Care Clin, 2018, 34(3): 479-492.
|
22. |
Forest SJ, Bello R, Friedmann P, et al. Readmissions after ventricular assist device: Etiologies, patterns, and days out of hospital. Ann Thorac Surg, 2013, 95(4): 1276-1281.
|
23. |
McIlvennan CK, Grady KL, Matlock DD, et al. End of life for patients with left ventricular assist devices: Insights from INTERMACS. J Heart Lung Transplant, 2019, 38(4): 374-381.
|
24. |
Kirklin JK, Naftel DC, Myers SL, et al. Quantifying the impact from stroke during support with continuous flow ventricular assist devices: An STS INTERMACS analysis. J Heart Lung Transplant, 2020, 39(8): 782-794.
|
25. |
Mehra MR. The burden of haemocompatibility with left ventricular assist systems: A complex weave. Eur Heart J, 2019, 40(8): 673-677.
|
26. |
Imamura T, Nguyen A, Kim G, et al. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur J Heart Fail, 2019, 21(5): 655-662.
|
27. |
Converse MP, Sobhanian M, Taber DJ, et al. Effect of angiotensin Ⅱ inhibitors on gastrointestinal bleeding in patients with left ventricular assist devices. J Am Coll Cardiol, 2019, 73(14): 1769-1778.
|
28. |
Cho SM, Starling RC, Teuteberg J, et al. Understanding risk factors and predictors for stroke subtypes in the ENDURANCE trials. J Heart Lung Transplant, 2020, 39(7): 639-647.
|
29. |
Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med, 2007, 357(9): 885-896.
|
30. |
Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol, 2009, 54(4): 312-321.
|
31. |
Matthews JC, Koelling TM, Pagani FD, et al. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol, 2008, 51(22): 2163-2172.
|
32. |
Fitzpatrick JR, Frederick JR, Hiesinger W, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg, 2009, 137(4): 971-977.
|
33. |
Takeda K, Takayama H, Colombo PC, et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant, 2015, 34(8): 1024-1032.
|
34. |
Kapelios CJ, Charitos C, Kaldara E, et al. Late-onset right ventricular dysfunction after mechanical support by a continuous-flow left ventricular assist device. J Heart Lung Transplant, 2015, 34(12): 1604-1610.
|
35. |
Shah P, Ha R, Singh R, et al. Multicenter experience with durable biventricular assist devices. J Heart Lung Transplant, 2018, 37(9): 1093-1101.
|
36. |
Vivo RP, Cordero-Reyes AM, Qamar U, et al. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant, 2013, 32(8): 792-799.
|
37. |
Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant, 2016, 35(1): 67-73.
|
38. |
Morine KJ, Kiernan MS, Pham DT, et al. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail, 2016, 22(2): 110-116.
|
39. |
Piacentino V, Williams ML, Depp T, et al. Impact of tricuspid valve regurgitation in patients treated with implantable left ventricular assist devices. Ann Thorac Surg, 2011, 91(5): 1342-1346.
|
40. |
Song HK, Gelow JM, Mudd J, et al. Limited utility of tricuspid valve repair at the time of left ventricular assist device implantation. Ann Thorac Surg, 2016, 101(6): 2168-2174.
|
41. |
Robertson JO, Grau-Sepulveda MV, Okada S, et al. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: A Society of Thoracic Surgeons database analysis. J Heart Lung Transplant, 2014, 33(6): 609-617.
|
42. |
Barac YD, Nicoara A, Bishawi M, et al. Durability and efficacy of tricuspid valve repair in patients undergoing left ventricular assist device implantation. JACC Heart Fail, 2020, 8(2): 141-150.
|
43. |
Loghmanpour NA, Kormos RL, Kanwar MK, et al. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail, 2016, 4(9): 711-721.
|
44. |
Peters AE, Smith LA, Ababio P, et al. Comparative analysis of established risk scores and novel hemodynamic metrics in predicting right ventricular failure in left ventricular assist device patients. J Card Fail, 2019, 25(8): 620-628.
|
45. |
Potapov EV, Schoenrath F, Falk V. Clinical signs of right ventricular failure following implantation of a left ventricular assist device. Eur J Heart Fail, 2020, 22(2): 383-384.
|
46. |
Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant, 2017, 36(10): 1080-1086.
|
47. |
Kim J, Feller ED, Chen W, et al. FDG PET/CT for early detection and localization of left ventricular assist device infection: Impact on patient management and outcome. JACC Cardiovasc Imaging, 2019, 12(4): 722-729.
|
48. |
Nakahara S, Chien C, Gelow J, et al. Ventricular arrhythmias after left ventricular assist device. Circ Arrhythm Electrophysiol, 2013, 6(3): 648-654.
|
49. |
Cikes M, Jakus N, Claggett B, et al. Cardiac implantable electronic devices with a defibrillator component and all-cause mortality in left ventricular assist device carriers: Results from the PCHF-VAD registry. Eur J Heart Fail, 2019, 21(9): 1129-1141.
|
50. |
Akin S, Soliman O, de By TMMH, et al. Causes and predictors of early mortality in patients treated with left ventricular assist device implantation in the European Registry of Mechanical Circulatory Support (EUROMACS). Intensive Care Med, 2020, 46(7): 1349-1360.
|
51. |
Kato N, Jaarsma T, Ben Gal T. Learning self-care after left ventricular assist device implantation. Curr Heart Fail Rep, 2014, 11(3): 290-298.
|
52. |
Metra M. January 2019 at a glance: Prognostic assessment, left ventricular assist devices, disease management and quality of care. Eur J Heart Fail, 2019, 21(1): 1-2.
|
53. |
Sponga S, Bagur R, Livi U. Teleconsultation for left ventricular assist device patients: A new standard of care. Eur J Heart Fail, 2018, 20(4): 818-821.
|
54. |
Ben Gal T, Ben Avraham B, Abu-Hazira M, et al. The consequences of the COVID-19 pandemic for self-care in patients supported with a left ventricular assist device. Eur J Heart Fail, 2020, 22(6): 933-936.
|