1. |
沈嘉渝, 张尔永, 胡佳. 体外循环急性肺损伤与肺保护策略的研究进展. 中国胸心血管外科临床杂志, 2019, 26(2): 186-191.
|
2. |
Salameh A, Greimann W, Vollroth M, et al. Lung protection in cardio-pulmonary bypass. J Physiol Pharmacol, 2017, 68(1): 99-116.
|
3. |
Liu YS, Yang Q, Li S, et al. Luteolin attenuates angiotensin Ⅱ-induced renal damage in apolipoprotein E-deficient mice. Mol Med Rep, 2021, 23(2): 157.
|
4. |
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, et al. Autophagy regulation using luteolin: New insight into its anti-tumor activity. Cancer Cell Int, 2020, 20(1): 537.
|
5. |
Liu CW, Lin HW, Yang DJ, et al. Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-κB and activation of HO-1. Free Radic Biol Med, 2016, 95: 180-189.
|
6. |
Liu X, Meng J. Luteolin alleviates LPS-induced bronchopneumonia injury in vitro and in vivo by down-regulating microRNA-132 expression. Biomed Pharmacother, 2018, 106: 1641-1649.
|
7. |
Park EJ, Kim YM, Kim HJ, et al. Luteolin activates ERK1/2- and Ca 2+-dependent HO-1 induction that reduces LPS-induced HMGB1, iNOS/NO, and COX-2 expression in RAW264.7 cells and mitigates acute lung injury of endotoxin mice. Inflamm Res, 2018, 67(5): 445-453.
|
8. |
Lin LC, Pai YF, Tsai TH. Isolation of luteolin and luteolin-7-O-glucoside from dendranthema morifolium ramat tzvel and their pharmacokinetics in rats. J Agric Food Chem, 2015, 63(35): 7700-7706.
|
9. |
Li LP, Wu XD, Chen ZJ, et al. Interspecies difference of luteolin and apigenin after oral administration of Chrysanthemum morifolium extract and prediction of human pharmacokinetics. Pharmazie, 2013, 68(3): 195-200.
|
10. |
Cheruvu HS, Yadav NK, Valicherla GR, et al. LC-MS/MS method for the simultaneous quantification of luteolin, wedelolactone and apigenin in mice plasma using hansen solubility parameters for liquid-liquid extraction: Application to pharmacokinetics of Eclipta alba chloroform fraction. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1081-1082: 76-86.
|
11. |
Nie Y, Wang Z, Chai G, et al. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-κB signaling pathway mediated by p38 MAPK and Akt. Molecules, 2019, 24(8): 1510.
|
12. |
Chen Y, Guo S, Jiang K, et al. Glycitin alleviates lipopolysaccharide-induced acute lung injury via inhibiting NF-κB and MAPKs pathway activation in mice. Int Immunopharmacol, 2019, 75: 105749.
|
13. |
Zhang H, Chen S, Zeng M, et al. Apelin-13 administration protects against LPS-induced acute lung injury by inhibiting NF-κB pathway and NLRP3 inflammasome activation. Cell Physiol Biochem, 2018, 49(5): 1918-1932.
|
14. |
Li W, Zhao R, Wang X, et al. Nobiletin-ameliorated lipopolysaccharide-induced inflammation in acute lung injury by suppression of NF-κB pathway in vivo and vitro. Inflammation, 2018, 41(3): 996-1007.
|
15. |
Zhu H, Wang Y, Sun J, et al. Tomentosin inhibits lipopolysaccharide-induced acute lung injury and inflammatory response by suppression of the NF-κB pathway in a mouse model of sepsis. J Environ Pathol Toxicol Oncol, 2020, 39(4): 291-298.
|
16. |
Chen Q, Lu X, Zhang X. Noncanonical NF-κB signaling pathway in liver diseases. J Clin Transl Hepatol, 2021, 9(1): 81-89.
|
17. |
Zhang R, Guo N, Yan G, et al. Ginkgolide C attenuates lipopolysaccharide-induced acute lung injury by inhibiting inflammation via regulating the CD40/NF-κB signaling pathway. Int J Mol Med, 2021, 47(4): 62.
|
18. |
Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol, 2018, 335: 41-84.
|
19. |
Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol, 2018, 18(5): 309-324.
|
20. |
Ko HJ, Jo YH, Patnaik BB, et al. IKKγ/NEMO is required to confer antimicrobial innate immune responses in the yellow mealworm, Tenebrio molitor. Int J Mol Sci, 2020, 21(18): 6734.
|
21. |
Fu J, Huang D, Yuan F, et al. TRAF-interacting protein with forkhead-associated domain (TIFA) transduces DNA damage-induced activation of NF-κB. J Biol Chem, 2018, 293(19): 7268-7280.
|
22. |
Nighot M, Rawat M, Al-Sadi R, et al. Lipopolysaccharide-induced increase in intestinal permeability is mediated by TAK-1 activation of IKK and MLCK/MYLK gene. Am J Pathol, 2019, 189(4): 797-812.
|
23. |
Chen B, Li C, Yao J, et al. Zebrafish NIK mediates IFN induction by regulating activation of IRF3 and NF-κB. J Immunol, 2020, 204(7): 1881-1891.
|