1. |
Late-Breaking Science abstracts and Featured Science abstracts from the American Heart Association's Scientific Sessions 2021 and Late-Breaking abstracts in Resuscitation Science from the Resuscitation Science Symposium 2021. Circulation, 2021, 144(25): e564-e593.
|
2. |
Gaudino M, Sanna T, Ballman KV, et al. Posterior left pericardiotomy for the prevention of atrial fibrillation after cardiac surgery: An adaptive, single-centre, single-blind, randomised, controlled trial. Lancet, 2021, 398(10316): 2075-2083.
|
3. |
Pepi M, Muratori M, Barbier P, et al. Pericardial effusion after cardiac surgery: Incidence, site, size, and haemodynamic consequences. Br Heart J, 1994, 72(4): 327-331.
|
4. |
St-Onge S, Perrault LP, Demers P, et al. Pericardial blood as a trigger for postoperative atrial fibrillation after cardiac surgery. Ann Thorac Surg, 2018, 105(1): 321-328.
|
5. |
Greenberg JW, Lancaster TS, Schuessler RB, et al. Postoperative atrial fibrillation following cardiac surgery: A persistent complication. Eur J Cardiothorac Surg, 2017, 52(4): 665-672.
|
6. |
Eikelboom R, Sanjanwala R, Le ML, et al. Postoperative atrial fibrillation after cardiac surgery: A systematic review and meta-analysis. Ann Thorac Surg, 2021, 111(2): 544-554.
|
7. |
Biancari F, Mahar MA. Meta-analysis of randomized trials on the efficacy of posterior pericardiotomy in preventing atrial fibrillation after coronary artery bypass surgery. J Thorac Cardiovasc Surg, 2010, 139(5): 1158-1161.
|
8. |
Hu XL, Chen Y, Zhou ZD, et al. Posterior pericardiotomy for the prevention of atrial fibrillation after coronary artery bypass grafting: A meta-analysis of randomized controlled trials. Int J Cardiol, 2016, 215: 252-256.
|
9. |
Ekim H, Kutay V, Hazar A, et al. Effects of posterior pericardiotomy on the incidence of pericardial effusion and atrial fibrillation after coronary revascularization. Med Sci Monit, 2006, 12(10): CR431-CR434.
|
10. |
Zangi L, Lui KO, von Gise A, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol, 2013, 31(10): 898-907.
|
11. |
Zhang Y, Zhang J, Butler J, et al. Contemporary epidemiology, management, and outcomes of patients hospitalized for heart failure in China: Results from the China Heart Failure (China-HF) Registry. J Card Fail, 2017, 23(12): 868-875.
|
12. |
Velazquez EJ, Lee KL, Deja MA, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med, 2011, 364(17): 1607-1616.
|
13. |
Carlsson L, Clarke JC, Yen C, et al. Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol Ther Methods Clin Dev, 2018, 9: 330-346.
|
14. |
Gan LM, Lagerström-Fermér M, Carlsson LG, et al. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat Commun, 2019, 10(1): 871.
|
15. |
Goldstein DJ. Device profile of the VEST for external support of SVG coronary artery bypass grafting: Historical development, current status, and future directions. Expert Rev Med Devices, 2021, 18(10): 921-931.
|
16. |
Mawhinney JA, Mounsey CA, Taggart DP. The potential role of external venous supports in coronary artery bypass graft surgery. Eur J Cardiothorac Surg, 2018, 53(6): 1127-1134.
|
17. |
Taggart DP, Webb CM, Desouza A, et al. Long-term performance of an external stent for saphenous vein grafts: The VEST Ⅳ trial. J Cardiothorac Surg, 2018, 13(1): 117.
|