1. |
Bankier AA, MacMahon H, Goo JM, et al. Recommendations for measuring pulmonary nodules at CT: A statement from the Fleischner Society. Radiology, 2017, 285(2): 584-600.
|
2. |
Park S, Lee SM, Choe J, et al. CT evaluation for clinical lung cancer staging: Do multiplanar measurements better reflect pathologic T-stage than Axial measurements? Korean J Radiol, 2019, 20(7): 1207-1215.
|
3. |
Kamran SC, Coroller T, Milani N, et al. The impact of quantitative CT-based tumor volumetric features on the outcomes of patients with limited stage small cell lung cancer. Radiat Oncol, 2020, 15(1): 14.
|
4. |
Walter JE, Heuvelmans MA, Bock GH, et al. Characteristics of new solid nodules detected in incidence screening rounds of low-dose CT lung cancer screening: The NELSON study. Thorax, 2018, 73(8): 741-747.
|
5. |
Heuvelmans MA, Walter JE, Vliegenthart R, et al. Disagreement of diameter and volume measurements for pulmonary nodule size estimation in CT lung cancer screening. Thorax, 2018, 73(8): 779-781.
|
6. |
Data from lung_phantom. The cancer imaging archive. URL: https://doi.org/10.7937/K9/TCIA.2015.08A1IXOO.
|
7. |
Kirby J, Prior F, Petrick N, et al. Introduction to special issue on datasets hosted in The Cancer Imaging Archive (TCIA). Med Phys, 2020, 47(12): 6026-6028.
|
8. |
Nair VS, Sundaram V, Desai M, et al. Accuracy of models to identify lung nodule cancer risk in the National Lung Screening Trial. Am J Respir Crit Care Med, 2018, 197(9): 1220-1223.
|
9. |
NIH National Cancer Institute Cancer Data Access System. URL: https://biometry.nci.nih.gov/cdas/nlst/, 2021-03-02.
|
10. |
Ren H, Zhou L, Liu G, et al. An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing. Quant Imaging Med Surg, 2020, 10(1): 233-242.
|
11. |
Instruction for use for Mimics Medical 21.0. URL: http://www.materialise.com/electronic-instructions-for-use, 2021-03-02.
|
12. |
Li WJ, Lv FJ, Tan YW, et al. Benign and malignant pulmonary part-solid nodules: Differentiation via thin-section computed tomography. Quant Imaging Med Surg, 2022, 12(1): 699-710.
|
13. |
Kim H, Goo JM, Kim YT, et al. Clinical T category of non-small cell lung cancers: Prognostic performance of unidimensional versus bidimensional measurements at CT. Radiology, 2019, 290(3): 807-813.
|
14. |
Morgant MC, Pagès PB, Orsini B, et al. Time trends in surgery for lung cancer in France from 2005 to 2012: A nationwide study. Eur Respir J, 2015, 46(4): 1131-1139.
|
15. |
Pagès PB, Cottenet J, Mariet AS, et al. In-hospital mortality following lung cancer resection: Nationwide administrative database. Eur Respir J, 2016, 47(6): 1809-1817.
|
16. |
Mery CM, Pappas AN, Burt BM, et al. Diameter of non-small cell lung cancer correlates with long-term survival: Implications for T stage. Chest, 2005, 128(5): 3255-3260.
|
17. |
Davey A, van Herk M, Faivre-Finn C, et al. Is tumour sphericity an important prognostic factor in patients with lung cancer? Radiother Oncol, 2020, 143: 73-80.
|
18. |
Li Q, Kim J, Balagurunathan Y, et al. CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy. Radiat Oncol, 2017, 12(1): 158.
|
19. |
Tarsitano A, Ricotta F, Cercenelli L, et al. Pretreatment tumor volume and tumor sphericity as prognostic factors in patients with oral cavity squamous cell carcinoma. J Craniomaxillofac Surg, 2019, 47(3): 510-515.
|
20. |
Tanner NT, Dai L, Bade BC, et al. Assessing the generalizability of the National Lung Screening Trial: Comparison of patients with stage 1 disease. Am J Respir Crit Care Med, 2017, 196(5): 602-608.
|
21. |
US Preventive Services Task Force, Krist AH, Davidson KW, et al. Screening for lung cancer: US preventive services task force recommendation statement. JAMA, 2021, 325(10): 962-970.
|
22. |
Kim H, Goo JM, Kim YT, et al. CT-defined visceral pleural invasion in T1 lung adenocarcinoma: Lack of relationship to disease-free survival. Radiology, 2019, 292(3): 741-749.
|
23. |
Sheikh M, Mukeriya A, Shangina O, et al. Postdiagnosis smoking cessation and reduced risk for lung cancer progression and mortality: A prospective cohort study. Ann Intern Med, 2021, 174(9): 1232-1239.
|
24. |
Micke P, Mattsson JS, Djureinovic D, et al (eds). WHO Classification of Lung Tumours Pleura, Thymus and Heart, 4th Edition. Lyon: IARC Press, 2015.
|
25. |
Yu M, Wang Z, Yang G, et al. A model of malignant risk prediction for solitary pulmonary nodules on 18 F-FDG PET/CT: Building and estimating. Thorac Cancer, 2020, 11(5): 1211-1215.
|
26. |
Kamiya S, Iwano S, Umakoshi H, et al. Computer-aided volumetry of part-solid lung cancers by using CT: Solid component size predicts prognosis. Radiology, 2018, 287(3): 1030-1040.
|
27. |
Cody DD, Kim HJ, Cagnon CH, et al. Normalized CT dose index of the CT scanners used in the national lung screening trial. AJR Am J Roentgenol, 2010, 194(6): 1539-1546.
|
28. |
Yoshida Y, Yanagawa M, Hata A, et al. Quantitative volumetry of ground-glass nodules on high-spatial-resolution CT with 0. 25-mm section thickness and 1024 matrix: Phantom and clinical studies. Eur J Radiol Open, 2021, 8: 100362.
|