1. |
Geest BD, Mishra M. Role of oxidative stress in heart failure: Insights from gene transfer studies. Biomedicines, 2021, 9(11): 1645.
|
2. |
He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem, 2017, 44(2): 532-553.
|
3. |
Andreadou I, Efentakis P, Frenis K, et al. Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases. Basic Res Cardiol, 2021, 116(1): 44.
|
4. |
Li YY, Xiang Y, Song Z, et al. Intramyocardial injection of thioredoxin 2-expressing lentivirus alleviates myocardial ischemia-reperfusion injury in rats. Am J Transl Res, 2017, 9(10): 4428-4439.
|
5. |
Chen C, Chen H, Zhou HJ, et al. Mechanistic role of thioredoxin 2 in heart failure. Adv Exp Med Biol, 2017, 982: 265-276.
|
6. |
Kim MK, Zhao L, Jeong S, et al. Structural and biochemical characterization of thioredoxin-2 from deinococcus radiodurans. Antioxidants (Basel), 2021, 10(11): 1843.
|
7. |
Wei B, Li F. Mechanisms of Trx2/ASK1-mediated mitochondrial injury in pemphigus vulgaris. Biomed Res Int, 2021, 2021: 2471518.
|
8. |
Bian M, Fan R, Zhao S, et al. Targeting the thioredoxin system as a strategy for cancer therapy. J Med Chem, 2019, 62(16): 7309-7321.
|
9. |
Wang BF, Yoshioka J. The emerging role of thioredoxin-interacting protein in myocardial ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther, 2017, 22(3): 219-229.
|
10. |
Bechtel TJ, Eranthie W. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics, 2017, 17(6): 10.1002/pmic. 201600391.
|
11. |
Benhar M. Oxidants, antioxidants and thiol redox switches in the control of regulated cell death pathways. Antioxidants (Basel), 2020, 9(4): 309.
|
12. |
Nagarajan N, Oka S, Sadoshima J. Modulation of signaling mechanisms in the heart by thioredoxin 1. Free Radic Biol Med, 2017, 109: 125-131.
|
13. |
Hwang-Bo H, Jeong JW, Han MH, et al. Auranofin, an inhibitor of thioredoxin reductase, induces apoptosis in hepatocellular carcinoma Hep3B cells by generation of reactive oxygen species. Gen Physiol Biophys, 2017, 36(2): 117-128.
|
14. |
Branco V, Coppo L, Solá S, et al. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol, 2017, 13: 278-287.
|
15. |
Yang J, Gong Y, Cai J, et al. Dysfunction of thioredoxin triggers inflammation through activation of autophagy in chicken cardiomyocytes. Biofactors, 2020, 46(4): 579-590.
|
16. |
Neidhardt S, Garbade J, Emrich F, et al. Ischemic cardiomyopathy affects the thioredoxin system in the human myocardium. J Card Fail, 2019, 25(3): 204-212.
|
17. |
Islam IM, Nagakannan P, Ogungbola O, et al. Thioredoxin system as a gatekeeper in caspase-6 activation and nuclear lamina integrity: Implications for Alzheimer's disease. Free Radic Biol Med, 2019,, 134: 567-580.
|
18. |
Nishimura A, Tanaka T, Kato Y, et al. Cardiac robustness regulated by reactive sulfur species. J Clin Biochem Nutr, 2022, 70(1): 1-6.
|
19. |
El Hadri K, Smith R, Duplus E, et al. Inflammation, oxidative stress, senescence in atherosclerosis: Thioredoxine-1 as an emerging therapeutic target. Int J Mol Sci, 2021, 23(1): 77.
|
20. |
Liu X, Wang L, Cai J, et al. N-acetylcysteine alleviates H2O2-induced damage via regulating the redox status of intracellular antioxidants in H9c2 cells. Int J Mol Med, 2019, 43(1): 199-208.
|
21. |
Ma M, Li R, Sun W, et al. Sevoflurane preconditioning inhibits cardiomyocyte injury induced by oxygen-glucose deprivation by modulating TXNIP. Int J Mol Med, 2020, 46(2): 889-897.
|
22. |
Wu ZL, Davis JRJ, Zhu Y. Dexmedetomidine protects against myocardial ischemia/reperfusion injury by ameliorating oxidative stress and cell apoptosis through the Trx1-dependent Akt pathway. Biomed Res Int, 2020, 2020: 8979270.
|
23. |
Liu F, Su H, Liu B, et al. STVNa Attenuates isoproterenol-induced cardiac hypertrophy response through the HDAC4 and Prdx2/ROS/Trx1 pathways. Int J Mol Sci, 2020, 21(2): 682.
|
24. |
Matsuzaki S, Eyster C, Newhardt MF, et al. Insulin signaling alters antioxidant capacity in the diabetic heart. Redox Biol, 2021, 47: 102140.
|
25. |
Wei H, Bu R, Yang Q, et al. Exendin-4 protects against hyperglycemia-induced cardiomyocyte pyroptosis via the AMPK-TXNIP pathway. J Diabetes Res, 2019, 2019: 8905917.
|
26. |
Wang DS, Yan LY, Yang DZ, et al. Formononetin ameliorates myocardial ischemia/reperfusion injury in rats by suppressing the ROS-TXNIP-NLRP3 pathway. Biochem Biophys Res Commun, 2020, 525(3): 759-766.
|
27. |
Li Y, Xu P, Wang Y, et al. Different intensity exercise preconditions affect cardiac function of exhausted rats through regulating TXNIP/TRX/NF-ĸB p65/NLRP3 inflammatory pathways. Evid Based Complement Alternat Med, 2020, 2020: 5809298.
|
28. |
Tao L, Gao E, Bryan NS, et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: Role of S-nitrosation. Proc Natl Acad Sci U S A, 2004, 101(31): 11471-11476.
|
29. |
Ovalle F, Grimes T, Xu G, et al. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nat Med, 2018, 24(8): 1108-1112.
|
30. |
Zitta K, Meybohm P, Gruenewald M, et al. Profiling of cell stress protein expression in cardiac tissue of cardiosurgical patients undergoing remote ischemic preconditioning: Implications for thioredoxin in cardioprotection. J Transl Med, 2015, 13: 34.
|
31. |
Gao C, Wang R, Li B, et al. TXNIP/Redd1 signalling and excessive autophagy: A novel mechanism of myocardial ischaemia/reperfusion injury in mice. Cardiovasc Res, 2020, 116(3): 645-657.
|
32. |
Handy DE, Joseph J, Loscalzo J. Selenium, a micronutrient that modulates cardiovascular health via redox enzymology. Nutrients, 2021, 13(9): 3238.
|