1. |
The International Agency for Research on Cancer. World cancer report: Cancer research for cancer prevention. URL: https://www.iarc.who.int/featured-news/new-world-cancer-report/. (2020-02-04) [2022-03-10].
|
2. |
李媛, 谢惠康, 武春燕. WHO胸部肿瘤分类(第5版)中肺肿瘤部分解读. 中国癌症杂志, 2021, 31(7): 574-580.
|
3. |
Xinli W, Xiaoshuang S, Chengxin Y, et al. CT-assisted improvements in the accuracy of the intraoperative frozen section examination of ground-glass density nodules. Comput Math Methods Med, 2022, 2022: 8967643.
|
4. |
Yotsukura M, Asamura H, Motoi N, et al. Long-term prognosis of patients with resected adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung. J Thorac Oncol, 2021, 16(8): 1312-1320.
|
5. |
Watanabe Y, Hattori A, Nojiri S, et al. Clinical impact of a small component of ground-glass opacity in solid-dominant clinical stage ⅠA non-small cell lung cancer. J Thorac Cardiovasc Surg, 2022, 163(3): 791-801.
|
6. |
Suzuki K, Watanabe SI, Wakabayashi M, et al. A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. J Thorac Cardiovasc Surg, 2022, 163(1): 289-301.
|
7. |
Suzuki K, Saji H, Aokage K, et al. Comparison of pulmonary segmentectomy and lobectomy: Safety results of a randomized trial. J Thorac Cardiovasc Surg, 2019, 158(3): 895-907.
|
8. |
Zhang Y, Shen Y, Qiang JW, et al. HRCT features distinguishing pre-invasive from invasive pulmonary adenocarcinomas appearing as ground-glass nodules. Eur Radiol, 2016, 26(9): 2921-2928.
|
9. |
Han L, Zhang P, Wang Y, et al. CT quantitative parameters to predict the invasiveness of lung pure ground-glass nodules (pGGNs). Clin Radiol, 2018, 73(5): 504.e1-504.e7.
|
10. |
Chu ZG, Li WJ, Fu BJ, et al. CT characteristics for predicting invasiveness in pulmonary pure ground-glass nodules. AJR Am J Roentgenol, 2020, 215(2): 351-358.
|
11. |
Fu F, Zhang Y, Wang S, et al. Computed tomography density is not associated with pathological tumor invasion for pure ground-glass nodules. J Thorac Cardiovasc Surg, 2021, 162(2): 451-459.
|
12. |
Liu LH, Liu M, Wei R, et al. CT findings of persistent pure ground glass opacity: Can we predict the invasiveness? Asian Pac J Cancer Prev, 2015, 16(5): 1925-1928.
|
13. |
Lee SM, Park CM, Goo JM, et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: Differentiation by using CT features. Radiology, 2013, 268(1): 265-273.
|
14. |
Lim HJ, Ahn S, Lee KS, et al. Persistent pure ground-glass opacity lung nodules≥10 mm in diameter at CT scan: Histopathologic comparisons and prognostic implications. Chest, 2013, 144(4): 1291-1299.
|
15. |
Li Q, Gu YF, Fan L, et al. Effect of CT window settings on size measurements of the solid component in subsolid nodules: Evaluation of prediction efficacy of the degree of pathological malignancy in lung adenocarcinoma. Br J Radiol, 2018, 91(1088): 20180251.
|
16. |
Yoo RE, Goo JM, Hwang EJ, et al. Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8 mm: Which window setting is better? Eur Radiol, 2017, 27(4): 1369-1376.
|
17. |
Lee KH, Goo JM, Park SJ, et al. Correlation between the size of the solid component on thin-section CT and the invasive component on pathology in small lung adenocarcinomas manifesting as ground-glass nodules. J Thorac Oncol, 2014, 9(1): 74-82.
|
18. |
Cohen JG, Reymond E, Lederlin M, et al. Differentiating pre- and minimally invasive from invasive adenocarcinoma using CT-features in persistent pulmonary part-solid nodules in Caucasian patients. Eur J Radiol, 2015, 84(4): 738-744.
|
19. |
Vansteenkiste JF, Cho BC, Vanakesa T, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2016, 17(6): 822-835.
|
20. |
Liang J, Xu XQ, Xu H, et al. Using the CT features to differentiate invasive pulmonary adenocarcinoma from pre-invasive lesion appearing as pure or mixed ground-glass nodules. Br J Radiol, 2015, 88(1053): 20140811.
|
21. |
Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical ⅠA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol, 2011, 6(4): 751-756.
|
22. |
Asamura H, Hishida T, Suzuki K, et al. Radiographically determined noninvasive adenocarcinoma of the lung: Survival outcomes of Japan Clinical Oncology Group 0201. J Thorac Cardiovasc Surg, 2013, 146(1): 24-30.
|
23. |
Katsumata S, Aokage K, Nakasone S, et al. Radiologic criteria in predicting pathologic less invasive lung cancer according to TNM 8th edition. Clin Lung Cancer, 2019, 20(2): e163-e170.
|
24. |
Takahashi M, Shigematsu Y, Ohta M, et al. Tumor invasiveness as defined by the newly proposed IASLC/ATS/ERS classification has prognostic significance for pathologic stage ⅠA lung adenocarcinoma and can be predicted by radiologic parameters. J Thorac Cardiovasc Surg, 2014, 147(1): 54-59.
|
25. |
Zhou QJ, Zheng ZC, Zhu YQ, et al. Tumor invasiveness defined by IASLC/ATS/ERS classification of ground-glass nodules can be predicted by quantitative CT parameters. J Thorac Dis, 2017, 9(5): 1190-1200.
|
26. |
Tamura M, Matsumoto I, Saito D, et al. Mean computed tomography value to predict the tumor invasiveness in clinical stage ⅠA lung cancer. Ann Thorac Surg, 2017, 104(1): 261-266.
|
27. |
吴汉然, 柳常青, 徐美青, 等. m-CT值在预测临床Ⅰa期肺癌和癌前病变恶性程度中的应用研究. 中国肺癌杂志, 2018, 21(3): 190-196.
|
28. |
Kitami A, Sano F, Hayashi S, et al. Correlation between histological invasiveness and the computed tomography value in pure ground-glass nodules. Surg Today, 2016, 46(5): 593-598.
|
29. |
Si MJ, Tao XF, Du GY, et al. Thin-section computed tomography-histopathologic comparisons of pulmonary focal interstitial fibrosis, atypical adenomatous hyperplasia, adenocarcinoma in situ, and minimally invasive adenocarcinoma with pure ground-glass opacity. Eur J Radiol, 2016, 85(10): 1708-1715.
|
30. |
高丰, 葛虓俊, 李铭, 等. 不同病理类型肺部磨玻璃结节的CT诊断. 中华肿瘤杂志, 2014, 36(3): 188-192.
|
31. |
Wu F, Tian SP, Jin X, et al. CT and histopathologic characteristics of lung adenocarcinoma with pure ground-glass nodules 10 mm or less in diameter. Eur Radiol, 2017, 27(10): 4037-4043.
|
32. |
Zhan Y, Peng X, Shan F, et al. Attenuation and morphologic characteristics distinguishing a ground-glass nodule measuring 5-10 mm in diameter as invasive lung adenocarcinoma on thin-slice CT. AJR Am J Roentgenol, 2019, 213(4): W162-W170.
|
33. |
Xiang W, Xing Y, Jiang S, et al. Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring≤10 mm on thin-section computed tomography. Cancer Imaging, 2014, 14(1): 33.
|
34. |
杨越清, 高杰, 金梅, 等. 纯磨玻璃密度肺腺癌内异常空气支气管征预测病理亚型的价值. 中华放射学杂志, 2017, 51(7): 489-492.
|
35. |
Gao F, Li M, Ge X, et al. Multi-detector spiral CT study of the relationships between pulmonary ground-glass nodules and blood vessels. Eur Radiol, 2013, 23(12): 3271-3277.
|
36. |
Dai J, Yu G, Yu J. Can CT imaging features of ground-glass opacity predict invasiveness? A meta-analysis. Thorac Cancer, 2018, 9(4): 452-458.
|
37. |
Son BY, Cho S, Yum SW, et al. The maximum standardized uptake value of preoperative positron emission tomography/computed tomography in lung adenocarcinoma with a ground-glass opacity component of less than 30 mm. J Surg Oncol, 2018, 117(3): 451-456.
|
38. |
Nakamura H, Saji H, Shinmyo T, et al. Close association of IASLC/ATS/ERS lung adenocarcinoma subtypes with glucose-uptake in positron emission tomography. Lung Cancer, 2015, 87(1): 28-33.
|
39. |
Shao X, Niu R, Jiang Z, et al. Role of PET/CT in management of early lung adenocarcinoma. AJR Am J Roentgenol, 2020, 214(2): 437-445.
|
40. |
Fu L, Alam MS, Ren Y, et al. Utility of maximum standard uptake value as a predictor for differentiating the invasiveness of T1 stage pulmonary adenocarcinoma. Clin Lung Cancer, 2018, 19(3): 221-229.
|
41. |
Zhou J, Li Y, Zhang Y, et al. Solitary ground-glass opacity nodules of stageⅠA pulmonary adenocarcinoma: Combination of 18F-FDG PET/CT and high-resolution computed tomography features to predict invasive adenocarcinoma. Oncotarget, 2017, 8(14): 23312-23321.
|
42. |
Niu R, Shao X, Shao X, et al. Lung adenocarcinoma manifesting as ground-glass opacity nodules 3 cm or smaller: Evaluation with combined high-resolution CT and PET/CT modality. AJR Am J Roentgenol, 2019, 213(5): W236-W245.
|
43. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
44. |
Fan L, Fang M, Li Z, et al. Radiomics signature: A biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule. Eur Radiol, 2019, 29(2): 889-897.
|
45. |
范丽, 方梦捷, 董迪, 等. 影像组学对磨玻璃结节型肺腺癌病理亚型的预测效能. 中华放射学杂志, 2017, 51(12): 912-917.
|
46. |
Liu CL, Zhang F, Cai Q, et al. Establishment of a predictive model for surgical resection of ground-glass nodules. J Am Coll Radiol, 2019, 16(4 Pt A): 435-445.
|
47. |
Sun Y, Li C, Jin L, et al. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: Invasive prediction. Eur Radiol, 2020, 30(7): 3650-3659.
|
48. |
张鹏, 徐欣楠, 王洪伟, 等. 基于深度学习的计算机辅助肺癌诊断方法. 计算机辅助设计与图形学学报, 2018, 30(1): 90-99.
|
49. |
Wang S, Wang R, Zhang S, et al. 3D convolutional neural network for differentiating pre-invasive lesions from invasive adenocarcinomas appearing as ground-glass nodules with diameters≤3 cm using HRCT. Quant Imaging Med Surg, 2018, 8(5): 491-499.
|
50. |
Ni Y, Yang Y, Zheng D, et al. The invasiveness classification of ground-glass nodules using 3D attention network and HRCT. J Digit Imaging, 2020, 33(5): 1144-1154.
|
51. |
Kobayashi Y, Mitsudomi T, Sakao Y, et al. Genetic features of pulmonary adenocarcinoma presenting with ground-glass nodules: The differences between nodules with and without growth. Ann Oncol, 2015, 26(1): 156-161.
|
52. |
Zou J, Lv T, Zhu S, et al. Computed tomography and clinical features associated with epidermal growth factor receptor mutation status in stage Ⅰ/Ⅱ lung adenocarcinoma. Thorac Cancer, 2017, 8(3): 260-270.
|
53. |
Hong SJ, Kim TJ, Choi YW, et al. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes. Eur Radiol, 2016, 26(10): 3660-3668.
|
54. |
Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol, 2016, 26(1): 32-42.
|
55. |
Lee HJ, Kim YT, Kang CH, et al. Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes. Radiology, 2013, 268(1): 254-264.
|
56. |
Glynn C, Zakowski MF, Ginsberg MS. Are there imaging characteristics associated with epidermal growth factor receptor and KRAS mutations in patients with adenocarcinoma of the lung with bronchioloalveolar features? J Thorac Oncol, 2010, 5(3): 344-348.
|
57. |
Dai J, Shi J, Soodeen-Lalloo AK, et al. Air bronchogram: A potential indicator of epidermal growth factor receptor mutation in pulmonary subsolid nodules. Lung Cancer, 2016, 98: 22-28.
|
58. |
Hsu JS, Huang MS, Chen CY, et al. Correlation between EGFR mutation status and computed tomography features in patients with advanced pulmonary adenocarcinoma. J Thorac Imaging, 2014, 29(6): 357-363.
|
59. |
Li X, Zhang W, Yu Y, et al. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction. BMC Cancer, 2020, 20(1): 60.
|
60. |
姜格宁, 陈昶, 朱余明, 等. 上海市肺科医院磨玻璃结节早期肺腺癌的诊疗共识(第一版). 中国肺癌杂志, 2018, 21(3): 147-159.
|