1. |
Sun R, Liu M, Lu L, et al. Congenital heart disease: Causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys, 2015, 72(3): 857-860.
|
2. |
Lacour-Gayet F, Clarke D, Jacobs J, et al. The Aristotle score: A complexity-adjusted method to evaluate surgical results. Eur J Cardiothorac Surg, 2004, 25(6): 911-924.
|
3. |
Larsen SH, Pedersen J, Jacobsen J, et al. The RACHS-1 risk categories reflect mortality and length of stay in a Danish population of children operated for congenital heart disease. Eur J Cardiothorac Surg, 2005, 28(6): 877-881.
|
4. |
O'Brien SM, Clarke DR, Jacobs JP, et al. An empirically based tool for analyzing mortality associated with congenital heart surgery. J Thorac Cardiovasc Surg, 2009, 138(5): 1139-1153.
|
5. |
Larrazabal LA, del Nido PJ, Jenkins KJ, et al. Measurement of technical performance in congenital heart surgery: A pilot study. Ann Thorac Surg, 2007, 83(1): 179-184.
|
6. |
Nathan M, Trachtenberg FL, Van Rompay MI, et al. The pediatric heart network residual lesion score study: Design and objectives. J Thorac Cardiovasc Surg, 2020, 160(1): 218-223.
|
7. |
Jenkins KJ, Gauvreau K, Newburger JW, et al. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg, 2002, 123(1): 110-118.
|
8. |
Allen P, Zafar F, Mi J, et al. Risk stratification for congenital heart surgery for ICD-10 administrative data (RACHS-2). J Am Coll Cardiol, 2022, 79(5): 465-478.
|
9. |
Jacobs JP, Jacobs ML, Mavroudis C, et al. Nomenclature and databases for the surgical treatment of congenital cardiac disease: An updated primer and an analysis of opportunities for improvement. Cardiol Young, 2008, 18 Suppl 2: 38-62.
|
10. |
Fuller SM, He X, Jacobs JP, et al. Estimating mortality risk for adult congenital heart surgery: An analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg, 2015, 100(5): 1728-1735.
|
11. |
Roques F, Nashef SA, Michel P, et al. Risk factors and outcome in European cardiac surgery: Analysis of the EuroSCORE multinational database of 19 030 patients. Eur J Cardiothorac Surg, 1999, 15(6): 816-822.
|
12. |
Sengupta A, Gauvreau K, Kohlsaat K, et al. Comparison of intraoperative and discharge residual lesion severity in congenital heart surgery. Ann Thorac Surg, 2022, 114(5): 1731-1737.
|
13. |
Sengupta A, Gauvreau K, Kohlsaat K, et al. Intraoperative residual lesion score predicts predischarge major residual lesions and reinterventions following congenital heart surgery. J Am Coll Cardiol, 2022, 80(12): 1202-1204.
|
14. |
Mildh L, Pettilä V, Sairanen H, et al. Predictive value of paediatric risk of mortality score and risk adjustment for congenital heart surgery score after paediatric open-heart surgery. Interact Cardiovasc Thorac Surg, 2007, 6(5): 628-631.
|
15. |
Jenkins KJ. Risk adjustment for congenital heart surgery: The RACHS-1 method. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2004, 7: 180-184.
|
16. |
Lacour-Gayet F, Clarke DR,. The Aristotle method: A new concept to evaluate quality of care based on complexity. Curr Opin Pediatr, 2005, 17(3): 412-417.
|
17. |
O'Brien SM, Jacobs JP, Clarke DR, et al. Accuracy of the Aristotle basic complexity score for classifying the mortality and morbidity potential of congenital heart surgery operations. Ann Thorac Surg, 2007, 84(6): 2027-2037.
|
18. |
Bojan M, Gerelli S, Gioanni S, et al. Comparative study of the Aristotle comprehensive complexity and the risk adjustment in congenital heart surgery scores. Ann Thorac Surg, 2011, 92(3): 949-956.
|
19. |
Yıldız O, Kasar T, Öztürk E, et al. Analysis of congenital heart surgery results: A comparison of four risk scoring systems. Turk Gogus Kalp Damar Cerrahisi Derg, 2018, 26(2): 200-206.
|
20. |
Gao HW, Chen QM, Zhao W, et al. Predictive value of 3 different risk stratification models for patients after congenital heart surgeries. Zhonghua Xin Xue Guan Bing Za Zhi, 2019, 47(5): 388-392.
|
21. |
Alsoufi B, McCracken C, Oster M, et al. Genetic and extracardiac anomalies are associated with inferior single ventricle palliation outcomes. Ann Thorac Surg, 2018, 106(4): 1204-1212.
|
22. |
Fraser CD, Hill KD, Wallace A, et al. The prevalence and impact of congenital diaphragmatic hernia among patients undergoing surgery for congenital heart disease. Semin Thorac Cardiovasc Surg, 2019, 31(1): 69-77.
|
23. |
Patel A, Costello JM, Backer CL, et al. Prevalence of noncardiac and genetic abnormalities in neonates undergoing cardiac operations: Analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg, 2016, 102(5): 1607-1614.
|
24. |
O'Brien SM, Jacobs JP, Shahian DM, et al. Development of a congenital heart surgery composite quality metric: Part 2: Analytic methods. Ann Thorac Surg, 2019, 107(2): 590-596.
|
25. |
Pasquali SK, Shahian DM, O'Brien SM, et al. Development of a congenital heart surgery composite quality metric: Part 1: Conceptual framework. Ann Thorac Surg, 2019, 107(2): 583-589.
|
26. |
Jacobs JP, O'Brien SM, Hill KD, et al. Refining the Society of Thoracic Surgeons Congenital Heart Surgery Database mortality risk model with enhanced risk adjustment for chromosomal abnormalities, syndromes, and noncardiac congenital anatomic abnormalities. Ann Thorac Surg, 2019, 108(2): 558-566.
|
27. |
Marelli AJ, Ionescu-Ittu R, Mackie AS, et al. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation, 2014, 130(9): 749-756.
|
28. |
Hörer J, Belli E, Roussin R, et al. Evaluation of the adult congenital heart surgery mortality score at two European centers. Ann Thorac Surg, 2018, 105(5): 1441-1446.
|
29. |
Hörer J, Kasnar-Samprec J, Cleuziou J, et al. Mortality following congenital heart surgery in adults can be predicted accurately by combining expert-based and evidence-based pediatric risk scores. World J Pediatr Congenit Heart Surg, 2016, 7(4): 425-435.
|
30. |
Roques F, Michel P, Goldstone AR, et al. The logistic EuroSCORE. Eur Heart J, 2003, 24(9): 881-882.
|
31. |
Nashef SA, Roques F, Sharples LD, et al. EuroSCOREⅡ. Eur J Cardiothorac Surg, 2012, 41(4): 734-744.
|
32. |
Ramchandani BK, Polo L, Sánchez R, et al. External validation of 3 risk scores in adults with congenital heart disease. Korean Circ J, 2019, 49(9): 856-863.
|
33. |
Jacquet L, Vancaenegem O, Rubay J, et al. Intensive care outcome of adult patients operated on for congenital heart disease. Intensive Care Med, 2007, 33(3): 524-528.
|
34. |
Rogers CA, Reeves BC, Caputo M, et al. Control chart methods for monitoring cardiac surgical performance and their interpretation. J Thorac Cardiovasc Surg, 2004, 128(6): 811-819.
|
35. |
Treasure T, Gallivan S, Sherlaw-Johnson C. Monitoring cardiac surgical performance: A commentary. J Thorac Cardiovasc Surg, 2004, 128(6): 823-825.
|
36. |
Pasquali SK, Banerjee M, Romano JC, et al. Hospital performance assessment in congenital heart surgery: Where do we go from here? Ann Thorac Surg, 2020, 109(3): 621-626.
|
37. |
Nathan M, Karamichalis J, Liu H, et al. Technical performance scores are strongly associated with early mortality, postoperative adverse events, and intensive care unit length of stay-analysis of consecutive discharges for 2 years. J Thorac Cardiovasc Surg, 2014, 147(1): 389-394.
|
38. |
Nathan M, Karamichalis JM, Liu H, et al. Surgical technical performance scores are predictors of late mortality and unplanned reinterventions in infants after cardiac surgery. J Thorac Cardiovasc Surg, 2012, 144(5): 1095-1101.
|
39. |
Lushaj EB, Bartlett HL, Lamers LJ, et al. Technical performance score predicts perioperative outcomes in complex congenital heart surgery performed in a small-to-medium-volume program. Pediatr Cardiol, 2020, 41(1): 88-93.
|
40. |
IJsselhof R, Gauvreau K, Del Nido P, et al. Technical performance score: Predictor of outcomes in complete atrioventricular septal defect repair. Ann Thorac Surg, 2017, 104(4): 1371-1377.
|
41. |
Muter A, Evans HM, Gauvreau K, et al. Technical performance score's association with arterial switch operation outcomes. Ann Thorac Surg, 2021, 111(4): 1367-1373.
|
42. |
Nathan M, Karamichalis JM, Liu H, et al. Intraoperative adverse events can be compensated by technical performance in neonates and infants after cardiac surgery: A prospective study. J Thorac Cardiovasc Surg, 2011, 142(5): 1098-1107.
|
43. |
Nathan M, Marshall AC, Kerstein J, et al. Technical performance score as predictor for post-discharge reintervention in valve-sparing tetralogy of Fallot repair. Semin Thorac Cardiovasc Surg, 2014, 26(4): 297-303.
|
44. |
Nathan M, Sadhwani A, Gauvreau K, et al. Association between technical performance scores and neurodevelopmental outcomes after congenital cardiac surgery. J Thorac Cardiovasc Surg, 2014, 148(1): 232-237.
|
45. |
Nathan M, Sleeper LA, Ohye RG, et al. Technical performance score is associated with outcomes after the Norwood procedure. J Thorac Cardiovasc Surg, 2014, 148(5): 2208-2213.
|
46. |
Karamichalis JM, Colan SD, Nathan M, et al. Technical performance scores in congenital cardiac operations: A quality assessment initiative. Ann Thorac Surg, 2012, 94(4): 1317-1323.
|
47. |
Nathan M, Gauvreau K, Liu H, et al. Outcomes differ in patients who undergo immediate intraoperative revision versus patients with delayed postoperative revision of residual lesions in congenital heart operations. J Thorac Cardiovasc Surg, 2014, 148(6): 2540-2546.
|
48. |
Tishler B, Gauvreau K, Colan SD, et al. Technical performance score predicts partial/transitional atrioventricular septal defect outcomes. Ann Thorac Surg, 2018, 105(5): 1461-1468.
|
49. |
Nathan M, Levine JC, Van Rompay MI, et al. Impact of major residual lesions on outcomes after surgery for congenital heart disease. J Am Coll Cardiol, 2021, 77(19): 2382-2394.
|
50. |
Ho DY, Katcoff H, Griffis HM, et al. Left valvar morphology is associated with late regurgitation in atrioventricular canal defect. Ann Thorac Surg, 2020, 110(3): 969-978.
|
51. |
Kulyabin YY, Soynov IA, Zubritskiy AV, et al. Does mitral valve repair matter in infants with ventricular septal defect combined with mitral regurgitation? Interact Cardiovasc Thorac Surg, 2018, 26(1): 106-111.
|
52. |
Martin-Garcia AC, Dimopoulos K, Boutsikou M, et al. Tricuspid regurgitation severity after atrial septal defect closure or pulmonic valve replacement. Heart, 2020, 106(6): 455-461.
|
53. |
Toyono M, Fukuda S, Gillinov AM, et al. Different determinants of residual tricuspid regurgitation after tricuspid annuloplasty: Comparison of atrial septal defect and mitral valve prolapse. J Am Soc Echocardiogr, 2009, 22(8): 899-903.
|