1. |
Turina J, Hess OM, Krayenbuhl HP. Spontaneous course of aortic valve disease and indications for aortic valve replacement. Schweiz Med Wochenschr, 1988, 118(14): 508-516.
|
2. |
Kelly TA, Rothbart RM, Cooper CM, et al. Comparison of outcome of asymptomatic to symptomatic patients older than 20 years of age with valvular aortic stenosis. Am J Cardiol, 1988, 61(1): 123-130.
|
3. |
Eveborn GW, Schirmer H, Heggelund G, et al. The evolving epidemiology of valvular aortic stenosis. The Tromso study. Heart, 2013, 99(6): 396-400.
|
4. |
Baumgartner H, Hung J, Bermejo J, et al. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging, 2017, 18(3): 254-275.
|
5. |
Iung B, Vahanian A. Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol, 2011, 8(3): 162-172.
|
6. |
Jan MF, Tajik AJ. Auscultatory interregnum: Bicentennial of the Stethoscope. Circulation, 2020, 142(8): 715-716.
|
7. |
David SG, Angelo T, Mario S, et al. Computer analysis of phonocardiograms. Prog Cardiovas Dis, 1963, 5(4): 393-405.
|
8. |
Li S, Li F, Tang S, et al. A review of computer-aided heart sound detection techniques. Biomed Res Int, 2020: 20205846191.
|
9. |
Liu C, Springer D, Li Q, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas, 2016, 37(12): 2181-2213.
|
10. |
Clifford GD, Liu C, Moody B, et al. Classification of normal/abnormal heart sound recordings: The physionet/computing in cardiology challenge 2016. Computing in Cardiology. IEEE, 2017.
|
11. |
Huang G, Liu Z, Van-Der-Maaten L, et al. Densely connected convolutional networks. 2017: 2261-2269.
|
12. |
Sztajzel JM, Picard-Kossovsky M, Lerch R, et al. Accuracy of cardiac auscultation in the era of Doppler-echocardiography: A comparison between cardiologists and internists. Int J Cardiol, 2010, 138(3): 308-310.
|
13. |
Dwivedi AK, Imtiaz SA, Rodriguez-Villegas E. Algorithms for automatic analysis and classification of heart sounds–A systematic review. IEEE Access, 2019, 78316-8345.
|
14. |
Dominguez-Morales JP, Jimenez-Fernandez AF, Dominguez-Morales MJ, et al. Deep neural networks for the recognition and classification of heart murmurs using neuromorphic auditory sensors. IEEE Trans Biomed Circuits Syst, 2018, 12(1): 24-34.
|
15. |
Siddique L, Muhammad U, Rajib R, et al. Phonocardiographic sensing using deep learning for abnormal heartbeat detection. IEEE Sensors J, 2018, 18(22): 9393-9400.
|
16. |
Sotaquira M, Alvear D, Mondragon M. Phonocardiogram classification using deep neural networks and weighted probability comparisons. J Med Eng Technol, 2018, 42(7): 510-517.
|
17. |
Yaseen, Son GY, Soonil K. Classification of heart sound signal using multiple features. Appl Sci, 2018, 8(12): 2344.
|
18. |
Oh SL, Jahmunah V, Ooi CP, et al. Classification of heart sound signals using a novel deep WaveNet model. Comput Methods Programs Biomed, 2020: 196105604.
|
19. |
Baghel N, Dutta M-K, Burget R. Automatic diagnosis of multiple cardiac diseases from PCG signals using convolutional neural network. Comput Methods Programs Biomed, 2020, 197: 105750.
|
20. |
Li Z, Chang Y, Schuller BW. CNN-based heart sound classification with an imbalance-compensating weighted loss function. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 4934-4937.
|
21. |
Cho J, Lee K, Shin E, et al. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? The International Conference on Learning Representations, 2016.
|
22. |
Qiu W, Qian K, Wang Z, et al. A federated learning paradigm for heart sound classification. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 1045-1048.
|
23. |
Hyunkwang L, Shahein T, Jenny L, et al. Fully automated deep learning system for bone age assessment. J Dig Image, 2017, 30(4): 427-441.
|
24. |
Strodthoff N, Strodthoff C. Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiol Measure, 2019, 40(1): 15001.
|
25. |
Liu J, Wang HL, Yang Z, et al. Deep learning-based computer-aided heart sound analysis in children with left-to-right shunt congenital heart disease. Int J Cardiol, 2022, 348: 58-64.
|