1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin, 2022, 72(1): 7-33.
|
3. |
Jonas DE, Reuland DS, Reddy SM, et al. Screening for lung cancer with low-dose computed tomography: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 2021, 325(10): 971-987.
|
4. |
Lovly CM. Expanding horizons for treatment of early-stage lung cancer. N Engl J Med, 2022, 386(21): 2050-2051.
|
5. |
Yee J, Sadar MD, Sin DD, et al. Connective tissue-activating peptideⅢ: A novel blood biomarker for early lung cancer detection. J Clin Oncol, 2009, 27(17): 2787-2792.
|
6. |
Pan J, Fang S, Tian H, et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer, 2020, 19(1): 9.
|
7. |
Li N, Wang L, Hu Y, et al. Global evolution of research on pulmonary nodules: A bibliometric analysis. Future Oncol, 2021, 17(20): 2631-2645.
|
8. |
Li N, Tan F, Chen W, et al. One-off low-dose CT for lung cancer screening in China: A multicentre, population-based, prospective cohort study. Lancet Respir Med, 2022, 10(4): 378-391.
|
9. |
Chan MH, Huang WT, Wang J, et al. Next-generation cancer-specific hybrid theranostic nanomaterials: MAGE-A3 NIR persistent luminescence nanoparticles conjugated to afatinib for in situ suppression of lung adenocarcinoma growth and metastasis. Adv Sci (Weinh), 2020, 7(9): 1903741.
|
10. |
Oudkerk M, Liu S, Heuvelmans MA, et al. Lung cancer LDCT screening and mortality reduction : Evidence, pitfalls and future perspectives. Nat Rev Clin Oncol, 2021, 18(3): 135-151.
|
11. |
Fehlmann T, Kahraman M, Ludwig N, et al. Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients. JAMA Oncol, 2020, 6(5): 714-723.
|
12. |
Ten Haaf K, Tammemägi MC, Bondy SJ, et al. Performance and cost-effectiveness of computed tomography lung cancer screening scenarios in a population-based setting: A microsimulation modeling analysis in Ontario, Canada. PLoS Med, 2017, 14(2): e1002225.
|
13. |
Lu MT, Raghu VK, Mayrhofer T, et al. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: Development and validation of a prediction model. Ann Intern Med, 2020, 173(9): 704-713.
|
14. |
Muller DC, Johansson M, Brennan P. Lung cancer risk prediction model incorporating lung function: Development and validation in the UK Biobank prospective cohort study. J Clin Oncol, 2017, 35(8): 861-869.
|
15. |
Cassidy A, Duffy SW, Myles JP, et al. Lung cancer risk prediction: A tool for early detection. Int J Cancer, 2007, 120(1): 1-6.
|
16. |
van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 2010, 84(2): 523-538.
|
17. |
Chen C, Song M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS One, 2019, 14(10): e0223994.
|
18. |
Chen C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc Natl Acad Sci U S A, 2004, 101 Suppl 1(Suppl 1): 5303-5310.
|
19. |
Jung JH, Chiang B, Grossniklaus HE, et al. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release, 2018, 277: 14-22.
|
20. |
Xie L, Chen Z, Wang H, et al. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World Neurosurg, 2020, 137: 435-442.
|
21. |
Du Y, Duan C, Yang Y, et al. Heart transplantation: A bibliometric review from 1990-2021. Curr Probl Cardiol, 2022, 47(8): 101176.
|
22. |
Toumazis I, Bastani M, Han SS, et al. Risk-Based lung cancer screening: A systematic review. Lung Cancer, 2020, 147: 154-186.
|
23. |
Gray EP, Teare MD, Stevens J, et al. Risk prediction models for lung cancer: A systematic review. Clin Lung Cancer, 2016, 17(2): 95-106.
|
24. |
Zhang M, Zhou Y, Lu Y, et al. The 100 most-cited articles on prenatal diagnosis: A bibliometric analysis. Medicine (Baltimore), 2019, 98(38): e17236.
|
25. |
MacMahon H, Li F, Jiang Y, et al. Accuracy of the vancouver lung cancer risk prediction model compared with that of radiologists. Chest, 2019, 156(1): 112-119.
|
26. |
Qiu YL, Zheng H, Devos A, et al. A meta-learning approach for genomic survival analysis. Nat Commun, 2020, 11(1): 6350.
|
27. |
Shi L, Magee P, Fassan M, et al. A KRAS-responsive long non-coding RNA controls microRNA processing. Nat Commun, 2021, 12(1): 2038.
|
28. |
Swensen S J, Silverstein M D, Ilstrup D M, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med, 1997, 157(8): 849-855.
|
29. |
Spitz MR, Hong WK, Amos CI, et al. A risk model for prediction of lung cancer. J Natl Cancer Inst, 2007, 99(9): 715-726.
|
30. |
Zhang Y, Yang M, Ng DM, et al. Multi-omics data analyses construct TME and identify the immune-related prognosis signatures in human LUAD. Mol Ther Nucleic Acids, 2020, 21: 860-873.
|
31. |
Takahashi S, Asada K, Takasawa K, et al. Predicting deep learning based multi-omics parallel integration survival subtypes in lung cancer using reverse phase protein array data. Biomolecules, 2020, 10(10): 1460.
|
32. |
Li W, Liu B, Wang W, et al. Lung cancer stage prediction using multi-omics data. Comput Math Methods Med, 2022, 2022: 2279044.
|
33. |
Wang T, Shao W, Huang Z, et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat Commun, 2021, 12(1): 3445.
|
34. |
Xing W, Sun H, Yan C, et al. A prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant from benign pulmonary nodules. BMC Cancer, 2021, 21(1): 263.
|
35. |
Hu F, Huang H, Jiang Y, et al. Discriminating invasive adenocarcinoma among lung pure ground-glass nodules: A multi-parameter prediction model. J Thorac Dis, 2021, 13(9): 5383-5394.
|
36. |
Hosny A, Parmar C, Coroller TP, et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med, 2018, 15(11): e1002711.
|
37. |
Chen K, Sun J, Zhao H, et al. Non-invasive lung cancer diagnosis and prognosis based on multi-analyte liquid biopsy. Mol Cancer, 2021, 20(1): 23.
|
38. |
Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
39. |
Moyer VA, . Screening for lung cancer: U. S. Preventive Services Task Force recommendation statement. Ann Intern Med, 2014, 160(5): 330-338.
|
40. |
Carrillo-Perez F, Morales JC, Castillo-Secilla D, et al. Machine-learning-based late fusion on multi-omics and multi-scale data for non-small-cell lung cancer diagnosis. J Pers Med, 2022, 12(4): 601.
|
41. |
Li W, Liu B, Wang W, et al. Lung cancer stage prediction using multi-omics data. Comput Math Methods Med, 2022, 2022: 2279044.
|