1. |
Bragazzi MC, Cardinale V, Carpino G, et al. Cholangiocarcinoma:epidemiology and risk factors. Translat Gastrointest Cancer, 2012, 1(1):21-32.
|
2. |
吴孟超, 吴在德.黄家驷外科学中册. 7版.北京:人民卫生出版社, 2008:1695-1763.
|
3. |
Patel T. Worldwide trends in mortality from biliary tract maligna-ncies. BMC Cancer, 2002, 2:10.
|
4. |
Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis, 2004, 24(2):115-125.
|
5. |
Koh KC, Lee H, Choi MS, et al. Clinicopathologic features and prognosis of combined hepatocellular cholangiocarcinoma. Am J Surg, 2005, 189(1):120-125.
|
6. |
Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol, 2014, 60(6):1268-1289.
|
7. |
Nathan H, Aloia TA, Vauthey JN, et al. A proposed staging system for intrahepatic cholangiocarcinoma. Ann Surg Oncol, 2009, 16(1):14-22.
|
8. |
Jiang Z, Chu PG, Woda BA, et al. Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma:a retrospective study. Lancet Oncol, 2006, 7(7):556-564.
|
9. |
Wu SY, Yu MX, Li XG, et al. Identification of Homer1 as a potential prognostic marker for intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev, 2014, 15(7):3299-3304.
|
10. |
黄奋, 周泉波, 陈汝福, 等.黏蛋白1在肝内胆管结石合并肝内胆管癌的表达及意义.中华普通外科学文献:电子版, 2010, 4(5):424-427.
|
11. |
Park SY, Roh SJ, Kim YN, et al. Expression of MUC1, MUC2, MUC5AC and MUC6 in cholangiocarcinoma:prognostic impact. Oncol Rep, 2009, 22(3):649-657.
|
12. |
Tamada S, Goto M, Nomoto M, et al. Expression of MUC1 and MUC2 mucins in extrahepatic bile duct carcinomas:its relationship with tumor progression and prognosis. Patho Int, 2002, 52(11):713-723.
|
13. |
Zen Y, Sasaki M, Fujii T, et al. Different expression patterns of mucin core proteins and cytokeratins during intrahepatic cholan-giocarcinogenesis from biliary intraepithelial neoplasia and intra-ductal papillary neoplasm of bile duct-An immunohistochemical study of 110 cases of hepatolithiasis. J Hepatol, 2006, 44(2):350-358.
|
14. |
贺彦宇. MUC3、MUC4在肝内胆管结石并肝内胆管癌组织中的表达及相关研究.南华大学, 2012:1-52.
|
15. |
Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9(6):425-434.
|
16. |
Yu Y, Liao M, Liu R, et al. Overexpression of lactate dehydrogenase-A in human intrahepatic cholangiocarcinoma:its implication for treatment. World J Surg Oncol, 2014, 12:78.
|
17. |
Wang AG, Yoon SY, Oh JH, et al. Identification of intrahepaticcho-langiocarcinoma related genes by comparison with normal liver-tissues using expressed sequence tags. Biochem Biophys Res Commun, 2006, 345(3):1022-1032.
|
18. |
Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762):672-676.
|
19. |
Won KY, Kim GY, Kim YW, et al. Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer. Hum Pathol, 2010, 41(1):107-112.
|
20. |
Dong LW, Hou YJ, Tan YX, et al. Prognostic significance of Beclin 1 in intrahepatic cholangiocellular carcinoma. Autophagy, 2011, 7(10):1222-1229.
|
21. |
Schwarte-Waldhoff I, Klein S, Blass-Kampmann S, et al. DPC4/SMAD4 mediated tumor suppression of colon carcinoma cells is associated with reduced urokinase expression. Oncogene, 1999, 18(20):3152-3158.
|
22. |
Yan XQ, Zhang W, Zhang BX, et al. Inactivation of Smad4 is a prognostic factor in intrahepatic cholangiocarcinoma. Chin Med J (Engl). 2013, 126(16):3039-3043.
|
23. |
Meng L, Sefah K, O'Donoghue MB, et al. Silencing of PTK7 in colon cancer cells:caspase-10-dependent apoptosis via mitochon-drial pathway. PLoS One, 2010, 5(11):e14018.
|
24. |
Mossie K, Jallal B, Alves F, et al. Colon carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene, 1995, 11(10):2179-2184.
|
25. |
Shangguan D, Cao Z, Meng L, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res, 2008, 7(5):2133-2139.
|
26. |
Jin J, Ryu HS, Lee KB, et al. High expression of protein tyrosine kinase 7 significantly associates with invasiveness and poor prog-nosis in intrahepatic cholangiocarcinoma. PLos One, 2014, 9(2):e90247.
|
27. |
Nielsen J, Christiansen J, Lykke-Andersen J, et al. A family of insulin-like growth factorⅡmRNA-binding proteins represses translation in late development. Mol Cell Biol, 1999, 19(2):1262-1270.
|
28. |
Mueller-Pillasch F, Pohl B, Wilda M, et al. Expression of the highly conserved RNA binding protein KOC in embryogenesis. Mech Dev, 1999, 88(1):95-99.
|
29. |
Yantiss RK, Woda BA, Fanger GR, et al. KOC (K homology domain containing protein overexpressed in cancer):a novel molecular marker that distinguishes between benign and malignant lesions of the pancreas. Am J Surg Pathol, 2005, 29(2):188-195.
|
30. |
Walter O, Prasad M, Lu S, et al. IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol, 2009, 40(11):1528-1533.
|
31. |
Lu D, Vohra P, Chu PG, et al. An oncofetal protein IMP3:a new molecular marker for the detection of esophageal adenocarcinoma and high-grade dysplasia. Am J Surg Pathol, 2009; 33(4):521-525.
|
32. |
Lu D, Yang X, Jiang NY, et al. IMP3, a new biomarker to predict progression of cervical intraepithelial neoplasia into invasive cancer. Am J Surg Pathol, 2011; 35(11):1638-1645.
|
33. |
Gao Y, Yang M, Jiang Z, et al. IMP3 expression is associated with poor outcome and epigenetic deregulation in intrahepatic cholangiocarcinoma. Hum Pathol, 2014, 45(6):1184-1191.
|
34. |
Poultsides GA, Zhu AX, Choti MA, et al. Intrahepatic cholangiocar-cinoma. Surg Clin North Am, 2010, 90(4):817-837.
|
35. |
Sulpice L, Rayar M, Boucher E, et al. Treatment of recurrent intrahe-patic cholangiocarcinoma. Br J Surg, 2012, 99(12):1711-1717.
|
36. |
王猛, 赵勇, 孙国志, 等. CK7和CK20在肝内胆管癌及肝内胆管结石旁胆管组织中的表达.中国现代普通外科进展, 2010, 13(5):373-375.
|
37. |
Sia D, Tovar V, Moeini A, et al. Intrahepatic cholangiocarcinoma:pathogenesis and rationale for molecular therapies. Oncogene, 2013, 32(41):4861-4870.
|
38. |
Hezel AF, Deshpande V, Zhu AX. Genetics of biliary tract cancers and emerging targeted therapies. J Clin Oncol, 2010, 28(21):3531-3540.
|
39. |
Chen MH, Lin KJ, Yang WL, et al. Gene expression-based chemical genomics identifies heat-shock protein 90 inhibitors as potential therapeutic drugs in cholangiocarcinoma. Cancer. 2013, 119(2):293-303.
|
40. |
Chen MH, Chiang KC, Cheng CT, et al. Antitumor activity of the combination of an HSP90 inhibitor and a PI3K/mTOR dual inhi-bitor against cholangiocarcinoma. Oncotarget, 2014, 5(9):2372-2389.
|
41. |
Zhu AX, Hezel AF. Development of molecularly targeted therapies in biliary tract cancers:reassessing the challenges and opportunities. Hepatology, 2011, 53(2):695-704.
|
42. |
Shida D, Takabe K, Kapitonov D, et al. Targeting SphK1 as a new strategy against cancer. Curr Drug Targets, 2008, 9(8):662-673.
|
43. |
Pyne NJ, Pyne S. Sphingosine 1-phosphate and cancer. Nat Rev Cancer, 2010, 10(7):489-503.
|
44. |
Chen MH, Yen CC, Cheng CT, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocar-cinoma. Oncotarget, 2015, 6(27):23594-23608.
|
45. |
Matsumoto K, Onoyama T, Kawata S, et al. Hepatitis B and C virus infection is a risk factor for the development of cholangiocarcinoma. Intern Med, 2014, 53(7):651-654.
|