- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, P. R. China;
Citation: GONG Qi, DAI Chaoliu. Progress of study on relationship between endoplasmic reticulum stress and cell proliferation. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2020, 27(2): 239-244. doi: 10.7507/1007-9424.201905045 Copy
1. | Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem, 2005, 74: 739-789. |
2. | Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov, 2008, 7(12): 1013-1030. |
3. | Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006, 7(9): 880-885. |
4. | Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest, 2005, 115(10): 2656-2664. |
5. | Liu MQ, Chen Z, Chen LX. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin, 2016, 37(4): 425-443. |
6. | Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo), 2012, 2012: 857516. |
7. | Amin-Wetzel N, Saunders RA, Kamphuis MJ, et al. A J-protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell, 2017, 171(7): 1625-1637.e13. |
8. | Lynch JM, Maillet M, Vanhoutte D, et al. A thrombospondin-dependent pathway for a protective ER stress response. Cell, 2012, 149(6): 1257-1268. |
9. | Remondelli P, Renna M. The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front Mol Neurosci, 2017, 10: 187. |
10. | Promlek T, Ishiwata-Kimata Y, Shido M, et al. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell, 2011, 22(18): 3520-3532. |
11. | Teske BF, Wek SA, Bunpo P, et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell, 2011, 22(22): 4390-4405. |
12. | Bertolotti A, Zhang Y, Henders hot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol, 2000, 2(6): 326-332. |
13. | Hetz C, Papa FR. The unfolded protein response and cell fate control. Molecular cell, 2018, 69(2): 169-81. |
14. | Tadros S, Shukla SK, King RJ, et al. De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res, 2017, 77(20): 5503-5517. |
15. | Thivolet C, Vial G, Cassel R, et al. Reduction of endoplasmic reticulum-mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS One, 2017, 12(7): e0182027. |
16. | Li Y, Chen Y, Huang H, et al. Autophagy mediated by endoplasmic reticulum stress enhances the caffeine-induced apoptosis of hepatic stellate cells. Int J Mol Med, 2017, 40(5): 1405-1414. |
17. | Tufanli O, Telkoparan Akillilar P, Acosta-Alvear D, et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci U S A, 2017, 114(8): E1395-E1404. |
18. | Abdullah A, Ravanan P. The unknown face of IRE1α-beyond ER stress. Eur J Cell Biol, 2018, 97(5): 359-368. |
19. | Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature, 2007, 446(7132): 153-158. |
20. | Martino MB, Jones L, Brighton B, et al. The ER stress transducer IRE1β is required for airway epithelial mucin production. Mucosal Immunol, 2013, 6(3): 639-654. |
21. | Sepulveda D, Rojas-Rivera D, Rodríguez DA, et al. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α. Mol Cell, 2018, 69(2): 238-252.e7. |
22. | Bae D, Moore KA, Mella JM, et al. Degradation of Blos1 mRNA by IRE1 repositions lysosomes and protects cells from stress. J Cell Biol, 2019, 218(4): 1118-1127. |
23. | Cnop M, Toivonen S, Igoillo-Esteve M, et al. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol Metab, 2017, 6(9): 1024-1039. |
24. | Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol, 2005, 6(4): 318-327. |
25. | Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol, 2012, 4(10): pii: a011544. |
26. | Jiang HY, Wek SA, McGrath BC, et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol, 2003, 23(16): 5651-5663. |
27. | Jiang HY, Wek RC. GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem J, 2005, 385(Pt 2): 371-380. |
28. | Qiao Q, Sun C, Han C, et al. Endoplasmic reticulum stress pathway PERK-eIF2α confers radioresistance in oropharyngeal carcinoma by activating NF-κB. Cancer Sci, 2017, 108(7): 1421-1431. |
29. | Hillary RF, FitzGerald U. A lifetime of stress: ATF6 in development and homeostasis. J Biomed Sci, 2018, 25(1): 48. |
30. | Belmont PJ, Chen WJ, San Pedro MN, et al. Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene Derlin-3 in the ischemic heart. Circ Res, 2010, 106(2): 307-316. |
31. | Sarvani C, Sireesh D, Ramkumar KM. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacol Res, 2017, 119: 412-421. |
32. | Almanza A, Carlesso A, Chintha C, et al. Endoplasmic reticulum stress signalling—from basic mechanisms to clinical applications. FEBS J, 2019, 286(2): 241-278. |
33. | Lin L, Liu A, Peng Z, et al. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res, 2011, 71(23): 7226-7237. |
34. | Chen C, Zhang X. IRE1α-XBP1 pathway promotes melanoma progression by regulating IL-6/STAT3 signaling. J Transl Med, 2017, 15(1): 42. |
35. | Schaper F, Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev, 2015, 26(5): 475-487. |
36. | Nechemia-Arbely Y, Shriki A, Denz U, et al. Early hepatocyte DNA synthetic response posthepatectomy is modulated by IL-6 trans-signaling and PI3K/AKT activation. J Hepatol, 2011, 54(5): 922-929. |
37. | Drucker C, Gewiese J, Malchow S, et al. Impact of interleukin-6 classic- and trans-signaling on liver damage and regeneration. J Autoimmun, 2010, 34(1): 29-37. |
38. | Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res, 2010, 107(7): 839-850. |
39. | Espada S, Stavik B, Holm S, et al. Tissue factor pathway inhibitor attenuates ER stress-induced inflammation in human M2-polarized macrophages. Biochem Biophys Res Commun, 2017, 491(2): 442-448. |
40. | Bockhorn M, Goralski M, Prokofiev D, et al. VEGF is important for early liver regeneration after partial hepatectomy. J Surg Res, 2007, 138(2): 291-299. |
41. | Shimizu H, Mitsuhashi N, Ohtsuka M, et al. Vascular endothelial growth factor and angiopoietins regulate sinusoidal regeneration and remodeling after partial hepatectomy in rats. World J Gastroenterol, 2005, 11(46): 7254-7260. |
42. | Takayanagi T, Kawai T, Forrester SJ, et al. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin Ⅱ. Hypertension, 2015, 65(6): 1349-1355. |
43. | Nakagawa H, Murata Y, Koyama K, et al. Identification of a brain-specific APC homologue, APCL, and its interaction with beta-catenin. Cancer Res, 1998, 58(22): 5176-5181. |
44. | Rashid F, Awan HM, Shah A, et al. Induction of miR-3648 upon ER stress and its regulatory role in cell proliferation. Int J Mol Sci, 2017, 18(7): pii: E1375. |
45. | Wang L, Ryoo HD, Qi Y, et al. PERK limits drosophila lifespan by promoting intestinal stem cell proliferation in response to ER stress. PLoS Genet, 2015, 11(5): e1005220. |
46. | Heijmans J, van Lidth de Jeude JF, Koo BK, et al. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep, 2013, 3(4): 1128-1139. |
47. | Wang L, Zeng X, Ryoo HD, et al. Integration of UPRER and oxidative stress signaling in the control of intestinal stem cell proliferation. PLoS Genet, 2014, 10(8): e1004568. |
48. | Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development, 2012, 139(16): 2845-2856. |
49. | Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev, 2013, 93(1): 23-67. |
50. | Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development, 2015, 142(9): 1572-1581. |
51. | Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle, 2016, 6: 1. |
52. | Xiong G, Hindi SM, Mann AK, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. Elife, 2017, 6: pii: e22871. |
53. | Cosgrove BD, Gilbert PM, Porpiglia E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med, 2014, 20(3): 255-264. |
54. | Bernet JD, Doles JD, Hall JK, et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med, 2014, 20(3): 265-271. |
55. | Szabat M, Kalynyak TB, Lim GE, et al. Musashi expression in β-cells coordinates insulin expression, apoptosis and proliferation in response to endoplasmic reticulum stress in diabetes. Cell Death Dis, 2011, 2: e232. |
56. | Jeffrey KD, Alejandro EU, Luciani DS, et al. Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci U S A, 2008, 105(24): 8452-8457. |
57. | Xu T, Yang L, Yan C, et al. The IRE1α-XBP1 pathway regulates metabolic stress-induced compensatory proliferation of pancreatic β-cells. Cell Res, 2014, 24(9): 1137-1140. |
58. | Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol, 2019, 54(2): 103-118. |
59. | Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal, 2014, 21(3): 396-413. |
60. | Liu Y, Shao M, Wu Y, et al. Role for the endoplasmic reticulum stress sensor IRE1α in liver regenerative responses. J Hepatol, 2015, 62(3): 590-598. |
61. | Argemí J, Kress TR, Chang HCY, et al. X-box binding protein 1 regulates unfolded protein, acute-phase, and DNA damage responses during regeneration of mouse liver. Gastroenterology, 2017, 152(5): 1203-1216.e15. |
62. | Walter F, Schmid J, Düssmann H, et al. Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival. Cell Death Differ, 2015, 22(9): 1502-1516. |
63. | Shore GC, Papa FR, Oakes SA. Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol, 2011, 23(2): 143-149. |
- 1. Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem, 2005, 74: 739-789.
- 2. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov, 2008, 7(12): 1013-1030.
- 3. Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006, 7(9): 880-885.
- 4. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest, 2005, 115(10): 2656-2664.
- 5. Liu MQ, Chen Z, Chen LX. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin, 2016, 37(4): 425-443.
- 6. Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo), 2012, 2012: 857516.
- 7. Amin-Wetzel N, Saunders RA, Kamphuis MJ, et al. A J-protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell, 2017, 171(7): 1625-1637.e13.
- 8. Lynch JM, Maillet M, Vanhoutte D, et al. A thrombospondin-dependent pathway for a protective ER stress response. Cell, 2012, 149(6): 1257-1268.
- 9. Remondelli P, Renna M. The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front Mol Neurosci, 2017, 10: 187.
- 10. Promlek T, Ishiwata-Kimata Y, Shido M, et al. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell, 2011, 22(18): 3520-3532.
- 11. Teske BF, Wek SA, Bunpo P, et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell, 2011, 22(22): 4390-4405.
- 12. Bertolotti A, Zhang Y, Henders hot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol, 2000, 2(6): 326-332.
- 13. Hetz C, Papa FR. The unfolded protein response and cell fate control. Molecular cell, 2018, 69(2): 169-81.
- 14. Tadros S, Shukla SK, King RJ, et al. De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res, 2017, 77(20): 5503-5517.
- 15. Thivolet C, Vial G, Cassel R, et al. Reduction of endoplasmic reticulum-mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS One, 2017, 12(7): e0182027.
- 16. Li Y, Chen Y, Huang H, et al. Autophagy mediated by endoplasmic reticulum stress enhances the caffeine-induced apoptosis of hepatic stellate cells. Int J Mol Med, 2017, 40(5): 1405-1414.
- 17. Tufanli O, Telkoparan Akillilar P, Acosta-Alvear D, et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci U S A, 2017, 114(8): E1395-E1404.
- 18. Abdullah A, Ravanan P. The unknown face of IRE1α-beyond ER stress. Eur J Cell Biol, 2018, 97(5): 359-368.
- 19. Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature, 2007, 446(7132): 153-158.
- 20. Martino MB, Jones L, Brighton B, et al. The ER stress transducer IRE1β is required for airway epithelial mucin production. Mucosal Immunol, 2013, 6(3): 639-654.
- 21. Sepulveda D, Rojas-Rivera D, Rodríguez DA, et al. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α. Mol Cell, 2018, 69(2): 238-252.e7.
- 22. Bae D, Moore KA, Mella JM, et al. Degradation of Blos1 mRNA by IRE1 repositions lysosomes and protects cells from stress. J Cell Biol, 2019, 218(4): 1118-1127.
- 23. Cnop M, Toivonen S, Igoillo-Esteve M, et al. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol Metab, 2017, 6(9): 1024-1039.
- 24. Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol, 2005, 6(4): 318-327.
- 25. Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol, 2012, 4(10): pii: a011544.
- 26. Jiang HY, Wek SA, McGrath BC, et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol, 2003, 23(16): 5651-5663.
- 27. Jiang HY, Wek RC. GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem J, 2005, 385(Pt 2): 371-380.
- 28. Qiao Q, Sun C, Han C, et al. Endoplasmic reticulum stress pathway PERK-eIF2α confers radioresistance in oropharyngeal carcinoma by activating NF-κB. Cancer Sci, 2017, 108(7): 1421-1431.
- 29. Hillary RF, FitzGerald U. A lifetime of stress: ATF6 in development and homeostasis. J Biomed Sci, 2018, 25(1): 48.
- 30. Belmont PJ, Chen WJ, San Pedro MN, et al. Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene Derlin-3 in the ischemic heart. Circ Res, 2010, 106(2): 307-316.
- 31. Sarvani C, Sireesh D, Ramkumar KM. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacol Res, 2017, 119: 412-421.
- 32. Almanza A, Carlesso A, Chintha C, et al. Endoplasmic reticulum stress signalling—from basic mechanisms to clinical applications. FEBS J, 2019, 286(2): 241-278.
- 33. Lin L, Liu A, Peng Z, et al. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res, 2011, 71(23): 7226-7237.
- 34. Chen C, Zhang X. IRE1α-XBP1 pathway promotes melanoma progression by regulating IL-6/STAT3 signaling. J Transl Med, 2017, 15(1): 42.
- 35. Schaper F, Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev, 2015, 26(5): 475-487.
- 36. Nechemia-Arbely Y, Shriki A, Denz U, et al. Early hepatocyte DNA synthetic response posthepatectomy is modulated by IL-6 trans-signaling and PI3K/AKT activation. J Hepatol, 2011, 54(5): 922-929.
- 37. Drucker C, Gewiese J, Malchow S, et al. Impact of interleukin-6 classic- and trans-signaling on liver damage and regeneration. J Autoimmun, 2010, 34(1): 29-37.
- 38. Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res, 2010, 107(7): 839-850.
- 39. Espada S, Stavik B, Holm S, et al. Tissue factor pathway inhibitor attenuates ER stress-induced inflammation in human M2-polarized macrophages. Biochem Biophys Res Commun, 2017, 491(2): 442-448.
- 40. Bockhorn M, Goralski M, Prokofiev D, et al. VEGF is important for early liver regeneration after partial hepatectomy. J Surg Res, 2007, 138(2): 291-299.
- 41. Shimizu H, Mitsuhashi N, Ohtsuka M, et al. Vascular endothelial growth factor and angiopoietins regulate sinusoidal regeneration and remodeling after partial hepatectomy in rats. World J Gastroenterol, 2005, 11(46): 7254-7260.
- 42. Takayanagi T, Kawai T, Forrester SJ, et al. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin Ⅱ. Hypertension, 2015, 65(6): 1349-1355.
- 43. Nakagawa H, Murata Y, Koyama K, et al. Identification of a brain-specific APC homologue, APCL, and its interaction with beta-catenin. Cancer Res, 1998, 58(22): 5176-5181.
- 44. Rashid F, Awan HM, Shah A, et al. Induction of miR-3648 upon ER stress and its regulatory role in cell proliferation. Int J Mol Sci, 2017, 18(7): pii: E1375.
- 45. Wang L, Ryoo HD, Qi Y, et al. PERK limits drosophila lifespan by promoting intestinal stem cell proliferation in response to ER stress. PLoS Genet, 2015, 11(5): e1005220.
- 46. Heijmans J, van Lidth de Jeude JF, Koo BK, et al. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep, 2013, 3(4): 1128-1139.
- 47. Wang L, Zeng X, Ryoo HD, et al. Integration of UPRER and oxidative stress signaling in the control of intestinal stem cell proliferation. PLoS Genet, 2014, 10(8): e1004568.
- 48. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development, 2012, 139(16): 2845-2856.
- 49. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev, 2013, 93(1): 23-67.
- 50. Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development, 2015, 142(9): 1572-1581.
- 51. Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle, 2016, 6: 1.
- 52. Xiong G, Hindi SM, Mann AK, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. Elife, 2017, 6: pii: e22871.
- 53. Cosgrove BD, Gilbert PM, Porpiglia E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med, 2014, 20(3): 255-264.
- 54. Bernet JD, Doles JD, Hall JK, et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med, 2014, 20(3): 265-271.
- 55. Szabat M, Kalynyak TB, Lim GE, et al. Musashi expression in β-cells coordinates insulin expression, apoptosis and proliferation in response to endoplasmic reticulum stress in diabetes. Cell Death Dis, 2011, 2: e232.
- 56. Jeffrey KD, Alejandro EU, Luciani DS, et al. Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci U S A, 2008, 105(24): 8452-8457.
- 57. Xu T, Yang L, Yan C, et al. The IRE1α-XBP1 pathway regulates metabolic stress-induced compensatory proliferation of pancreatic β-cells. Cell Res, 2014, 24(9): 1137-1140.
- 58. Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol, 2019, 54(2): 103-118.
- 59. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal, 2014, 21(3): 396-413.
- 60. Liu Y, Shao M, Wu Y, et al. Role for the endoplasmic reticulum stress sensor IRE1α in liver regenerative responses. J Hepatol, 2015, 62(3): 590-598.
- 61. Argemí J, Kress TR, Chang HCY, et al. X-box binding protein 1 regulates unfolded protein, acute-phase, and DNA damage responses during regeneration of mouse liver. Gastroenterology, 2017, 152(5): 1203-1216.e15.
- 62. Walter F, Schmid J, Düssmann H, et al. Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival. Cell Death Differ, 2015, 22(9): 1502-1516.
- 63. Shore GC, Papa FR, Oakes SA. Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol, 2011, 23(2): 143-149.
-
Previous Article
原发性纵隔骨肉瘤一例 -
Next Article
Research progress of correlation between pancreatic cancer and diabetes mellitus