- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu 610041, R. P. China;
Citation: FANG Ling, YANG Xiaoqin, LI Hongjiang. Research progress on the relationship between estrogen metabolism and breast cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2020, 27(3): 374-378. doi: 10.7507/1007-9424.201909102 Copy
1. | Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer, 2019, 11: 151-164. |
2. | Gu X, Zheng R, Xia C, et al. 中国预期寿命与癌症发病率和死亡率的相互影响: 基于人群的聚类分析. 癌症, 2019, 38(1): 23-38. |
3. | 李贺, 郑荣寿, 张思维, 等. 2014年中国女性乳腺癌发病与死亡分析. 中华肿瘤杂志, 2018, 40(3): 166-171. |
4. | Ziegler RG, Faupel-Badger JM, Sue LY, et al. A new approach to measuring estrogen exposure and metabolism in epidemiologic studies. J Steroid Biochem Mol Biol, 2010, 121(3-5): 538-545. |
5. | You J, Shi Y, Li JQ, et al. Rapid quantification of human urinary estrogens and estrogen metabolites by HPLC mass spectrometry. Microchem J, 2019, 147: 157-162. |
6. | 孙向洁, 杨文涛. 免疫组织化学在乳腺癌分子分型中的作用及目前存在的问题. 中国癌症杂志, 2019, 29(3): 161-165. |
7. | 高纪东, 王靖, 冯晓丽, 等. 5758例女性乳腺癌激素受体状态及其相关因素分析. 中华肿瘤杂志, 2009, 31(9): 683-686. |
8. | Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature, 2000, 406(6797): 747-752. |
9. | Need EF, Atashgaran V, Ingman WV, et al. Hormonal regulation of the immune microenvironment in the mammary gland. J Mammary Gland Biol Neoplasia, 2014, 19(2): 229-239. |
10. | Cantini L, Pistelli M, Merloni, et al. Body mass index and hormone receptor status influence recurrence risk in HER2-positive early breast cancer patients. Clin Breast Cancer, 2019 Jul 11.[Epub ahead of print]. |
11. | Visvanathan K, Fabian CJ, Bantug E, et al. Use of endocrine therapy for breast cancer risk reduction: ASCO clinical practice guideline update. J Clin Oncol, 2019, 37(33): 3152-3165. |
12. | Sinpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol, 2003, 86(3-5): 225-230. |
13. | 程泽能, 周宏灏. 雌激素的代谢机制及其与疾病的相关性. 中国临床药理学杂志, 2000, 16(4): 304-308. |
14. | Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Cancer Letters, 2015, 356(2, Part A): 231-243. |
15. | Ziegler RG, Fuhrman BJ, Moore SC, et al. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids, 2015, 99(Pt A): 67-75. |
16. | Wen CJ, Wu LX, Fu LJ, et al. Preferential induction of CYP1A1 over CYP1B1 in human breast cancer MCF-7 cells after exposure to berberine. Asian Pac J Cancer Prev, 2014, 15(1): 495-499. |
17. | Wang S, Dunlap TL, Howell CE, et al. Hop (Humulus lupulus L.) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation. Chem Res Toxicol, 2016, 29(7): 1142-1150. |
18. | Ruan X, Seeger H, Wallwiener D, et al. The ratio of the estradiol metabolites 2-hydroxyestrone (2-OHE1) and 16α-hydroxyestrone (16-OHE1) may predict breast cancer risk in postmenopausal but not in premenopausal women: two case–control studies. Arch Gynecol Obstet, 2015, 291(5): 1141-1146. |
19. | Choi HJ, Zhu BT. Critical role of cyclin B1/Cdc2 up-regulation in the induction of mitotic prometaphase arrest in human breast cancer cells treated with 2-methoxyestradiol. Biochim Biophys Acta, 2012, 1823(8): 1306-1315. |
20. | Zou X, Zhang L, Yuan J, et al. Endogenous hormone 2-methoxyestradiol suppresses venous hypertension-induced angiogenesis through up- and down-regulating p53 and id-1. J Cell Mol Med, 2018, 22(2): 957-967. |
21. | Tan J, Le A. Breast cancer metabolism. Adv Exp Med Biol, 2018, 1063: 83-93. |
22. | Gupta M, Mcdougal A, Safe S. Estrogenic and antiestrogenic activities of 16α- and 2-hydroxy metabolites of 17β-estradiol in MCF-7 and T47D human breast cancer cells. J Steroid Biochem Mol Biol, 1998, 67(5): 413-419. |
23. | Suto A, Telang NT, Tanino H, et al. In vitro and in vivo modulation of growth regulation in the human breast cancer cell line MCF-7 by estradiol metabolites. Breast Cancer, 1999, 6(2): 87-92. |
24. | Yager JD. Mechanisms of estrogen carcinogenesis: the role of E2/E1- quinone metabolites suggests new approaches to preventive intervention – a review. Steroids, 2015, 99: 56-60. |
25. | Moore SC, Matthews CE, Ou Shu X, et al. Endogenous estrogens, estrogen metabolites, and breast cancer risk in postmenopausal chinese women. J Natl Cancer Inst, 2016, 108(10): djw103. |
26. | Arslan AA, Koenig KL, Lenner P, et al. Circulating estrogen metabolites and risk of breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev, 2014, 23(7): 1290-1297. |
27. | Sood D, Johnson N, Jain P, et al. CYP3A7*1C allele is associated with reduced levels of 2-hydroxylation pathway oestrogen metabolites. Br J Cancer, 2017, 116(3): 382-388. |
28. | Niwa T, Murayama N, Imagawa Y, et al. Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab Rev, 2015, 47(2): 89-110. |
29. | Cavalieri EL, Rogan EG. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol, 2011, 125(3-5): 169-180. |
30. | Liehr JG, Ricci MJ. 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci U S A, 1996, 93(8): 3294-3296. |
31. | Bradlow HL, Hershcopf R, Martuuci C, et al. 16 alpha-hydroxylation of estradiol: a possible risk marker for breast cancer. Ann N Y Acad Sci, 1986, 464: 138-151. |
32. | Kim SH, Lee SU, Kim MH, et al. Mitogenic estrogen metabolites alter the expression of 17 beta-estradiol-regulated proteins including heat shock proteins in human MCF-7 breast cancer cells. Mol Cells, 2005, 20(3): 378-384. |
33. | Osborne MP, Bradlow HL, Wong YC, et al. Upregulation of estradiol C16α-hydroxylation in human breast tissue: a potential biomarker of breast cancer risk. J Natl Cancer Inst, 1993, 85(23): 1917-1920. |
34. | 王俊玲, 黄思敏, 梁启瑶, 等. 雌激素的来源及其在骨代谢中的作用. 中国骨质疏松杂志, 2015, 21(6): 729-732. |
35. | Hall JE. Endocrinology of the menopause. Endocrinol Metab Clin North Am, 2015, 44(3): 485-496. |
36. | Goedecke JH, Tootla M, Keswell D. Ethnic differences in regional adipose tissue oestrogen receptor gene expression. Endocr Connect, 2019, 8(1): 32-38. |
37. | Savolainen H, Vihma V, Wang F, et al. Estrogen biosynthesis in breast adipose tissue during menstrual cycle in women with and without breast cancer. Gynecol Endocrinol, 2018, 34(12): 1039-1043. |
38. | Brown KA, Iyengar NM, Zhou XK, et al. Menopause is a determinant of breast aromatase expression and its associations with BMI, inflammation, and systemic markers. J Clin Endocrinol Metab, 2017, 102(5): 1692-1701. |
39. | Premenopausal Breast Cancer Collaborative Group, Schoemaker MJ, Nichols HB, et al. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol, 2018, 4(11): e181771. |
40. | Engin A. Obesity-associated breast cancer: analysis of risk factors. Adv Exp Med Biol, 2017, 960: 571-606. |
41. | 谢梅青, 陈蓉, 任慕兰. 中国绝经管理与绝经激素治疗指南(2018). 协和医学杂志, 2018, 9(6): 512-525. |
42. | Purohit A, Reed MJ. Regulation of estrogen synthesis in postmenopausal women. Steroids, 2002, 67(12): 979-983. |
43. | Dehal SS, Brodie AM, Kupfer D. The aromatase inactivator 4-hydroxyandrostenedione (4-OH-A) inhibits tamoxifen metabolism by rat hepatic cytochrome P-450 3A: potential for drug-drug interaction of tamoxifen and 4-OH-A in combined anti-breast cancer therapy. Drug Metab Dispos, 1999, 27(3): 389-394. |
44. | Avvaru SP, Noolvi MN, Aminbhavi TM, et al. Aromatase inhibitors evolution as potential class of drugs in the treatment of postmenopausal breast cancer women. Mini Rev Med Chem, 2018, 18(7): 609-621. |
45. | Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA, 2002, 288(3): 321-333. |
46. | D'Alonzo M, Bounous VE, Villa M, et al. Current evidence of the oncological benefit-risk profile of hormone replacement therapy. Medicina (Kaunas), 2019, 55(9): pii: E573. |
47. | Li CI, Daling JR, Malone KE. Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998. J Clin Oncol, 2003, 21(1): 28-34. |
48. | Hartley MC, Mckinley BP, Rogers EA, et al. Differential expression of prognostic factors and effect on survival in young (≤40) breast cancer patients: a case-control study. Am Surg, 2006, 72(12): 1189-1194. |
49. | Eric I, Petek A, Kristek J, et al. Breast cancer in young women:pathologic and immunohistochemical features. Acta Clin Croat, 2018, 57(3): 497-502. |
50. | Cui Y, Deming SL, Shrubsole MJ, et al. Associations of hormone-related factors with breast cancer risk according to hormone receptor status among white and African American women. Clin Breast Cancer, 2014, 14(6): 417-425. |
51. | Tarone RE, Chu KC. The greater impact of menopause on ER- than ER+ breast cancer incidence: a possible explanation (United States). Cancer Causes Control, 2002, 13(1): 7-14. |
52. | Chung IY, Lee JW, Lee JS, et al. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer. PloS One, 2017, 12(3): e0170311. |
53. | Dunlap TL, Howell CE, Mukand N, et al. Red clover aryl hydrocarbon receptor (AhR) and estrogen receptor (ER) agonists enhance genotoxic estrogen metabolism. Chem Res Toxicol, 2017, 30(11): 2084-2092. |
54. | Paterni I, Granchi C, Katzenellenbogen JA, et al. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids, 2014, 90: 13-29. |
55. | Heldring N, Pike A, Andersson S, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev, 2007, 87(3): 905-931. |
56. | Willams C, Lin CY. Estrogen receptors in breast cancer: basic mechanisms and clinical implications. Ecancermedicalscience, 2013, 7: 370. |
57. | Giudice A, Barbieri A, BimonteI S, et al. Dissecting the prevention of estrogen-dependent breast carcinogenesis through Nrf2-dependent and independent mechanisms. Onco Targets Ther, 2019, 12: 4937-4953. |
58. | Kulkoyluoglu E, Arac A, Madak Z. Crosstalk between estrogen signaling and breast cancer metabolism. Trends in Endocrinol Metab, 2019, 30(1): 25-38. |
59. | Loboda A, Nebozhyn M, Klinghoffer R, et al. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genomics, 2010, 3: 26. |
60. | Dey N, De P, Leylang B. PI3K-AKT-mTOR inhibitors in breast cancers: from tumor cell signaling to clinical trials. Pharmacol Ther, 2017, 175: 91-106. |
61. | Yndestad S, Austreid E, Svanberg IR, et al. Activation of Akt characterizes estrogen receptor positive human breast cancers which respond to anthracyclines. Oncotarget, 2017, 8(25): 41227-41241. |
62. | Hayes MJ, Thomas D, Emmons A, et al. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res, 2008, 14(13): 4038-4044. |
63. | Bado I, Nikolos F, Rajapaksa G, et al. Somatic loss of estrogen receptor beta and p53 synergize to induce breast tumorigenesis. Breast Cancer Res, 2017, 19(1): 79. |
64. | Lu W, Katzenellenbogen BS. Estrogen receptor-β modulation of the ERα-p53 Loop regulating gene expression, proliferation, and apoptosis in breast cancer. Horm Cancer, 2017, 8(4): 230-242. |
65. | Yang J, Altahan A, Jones DT, et al. Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proc Natl Acad Sci U S A, 2015, 112(49): 15172-15177. |
66. | Huang B, Omoto Y, Iwase H, et al. Differential expression of estrogen receptor α, β1, and β2 in lobular and ductal breast cancer. Proc Natl Acad Sci U S A, 2014, 111(5): 1933-1938. |
- 1. Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer, 2019, 11: 151-164.
- 2. Gu X, Zheng R, Xia C, et al. 中国预期寿命与癌症发病率和死亡率的相互影响: 基于人群的聚类分析. 癌症, 2019, 38(1): 23-38.
- 3. 李贺, 郑荣寿, 张思维, 等. 2014年中国女性乳腺癌发病与死亡分析. 中华肿瘤杂志, 2018, 40(3): 166-171.
- 4. Ziegler RG, Faupel-Badger JM, Sue LY, et al. A new approach to measuring estrogen exposure and metabolism in epidemiologic studies. J Steroid Biochem Mol Biol, 2010, 121(3-5): 538-545.
- 5. You J, Shi Y, Li JQ, et al. Rapid quantification of human urinary estrogens and estrogen metabolites by HPLC mass spectrometry. Microchem J, 2019, 147: 157-162.
- 6. 孙向洁, 杨文涛. 免疫组织化学在乳腺癌分子分型中的作用及目前存在的问题. 中国癌症杂志, 2019, 29(3): 161-165.
- 7. 高纪东, 王靖, 冯晓丽, 等. 5758例女性乳腺癌激素受体状态及其相关因素分析. 中华肿瘤杂志, 2009, 31(9): 683-686.
- 8. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature, 2000, 406(6797): 747-752.
- 9. Need EF, Atashgaran V, Ingman WV, et al. Hormonal regulation of the immune microenvironment in the mammary gland. J Mammary Gland Biol Neoplasia, 2014, 19(2): 229-239.
- 10. Cantini L, Pistelli M, Merloni, et al. Body mass index and hormone receptor status influence recurrence risk in HER2-positive early breast cancer patients. Clin Breast Cancer, 2019 Jul 11.[Epub ahead of print].
- 11. Visvanathan K, Fabian CJ, Bantug E, et al. Use of endocrine therapy for breast cancer risk reduction: ASCO clinical practice guideline update. J Clin Oncol, 2019, 37(33): 3152-3165.
- 12. Sinpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol, 2003, 86(3-5): 225-230.
- 13. 程泽能, 周宏灏. 雌激素的代谢机制及其与疾病的相关性. 中国临床药理学杂志, 2000, 16(4): 304-308.
- 14. Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Cancer Letters, 2015, 356(2, Part A): 231-243.
- 15. Ziegler RG, Fuhrman BJ, Moore SC, et al. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids, 2015, 99(Pt A): 67-75.
- 16. Wen CJ, Wu LX, Fu LJ, et al. Preferential induction of CYP1A1 over CYP1B1 in human breast cancer MCF-7 cells after exposure to berberine. Asian Pac J Cancer Prev, 2014, 15(1): 495-499.
- 17. Wang S, Dunlap TL, Howell CE, et al. Hop (Humulus lupulus L.) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation. Chem Res Toxicol, 2016, 29(7): 1142-1150.
- 18. Ruan X, Seeger H, Wallwiener D, et al. The ratio of the estradiol metabolites 2-hydroxyestrone (2-OHE1) and 16α-hydroxyestrone (16-OHE1) may predict breast cancer risk in postmenopausal but not in premenopausal women: two case–control studies. Arch Gynecol Obstet, 2015, 291(5): 1141-1146.
- 19. Choi HJ, Zhu BT. Critical role of cyclin B1/Cdc2 up-regulation in the induction of mitotic prometaphase arrest in human breast cancer cells treated with 2-methoxyestradiol. Biochim Biophys Acta, 2012, 1823(8): 1306-1315.
- 20. Zou X, Zhang L, Yuan J, et al. Endogenous hormone 2-methoxyestradiol suppresses venous hypertension-induced angiogenesis through up- and down-regulating p53 and id-1. J Cell Mol Med, 2018, 22(2): 957-967.
- 21. Tan J, Le A. Breast cancer metabolism. Adv Exp Med Biol, 2018, 1063: 83-93.
- 22. Gupta M, Mcdougal A, Safe S. Estrogenic and antiestrogenic activities of 16α- and 2-hydroxy metabolites of 17β-estradiol in MCF-7 and T47D human breast cancer cells. J Steroid Biochem Mol Biol, 1998, 67(5): 413-419.
- 23. Suto A, Telang NT, Tanino H, et al. In vitro and in vivo modulation of growth regulation in the human breast cancer cell line MCF-7 by estradiol metabolites. Breast Cancer, 1999, 6(2): 87-92.
- 24. Yager JD. Mechanisms of estrogen carcinogenesis: the role of E2/E1- quinone metabolites suggests new approaches to preventive intervention – a review. Steroids, 2015, 99: 56-60.
- 25. Moore SC, Matthews CE, Ou Shu X, et al. Endogenous estrogens, estrogen metabolites, and breast cancer risk in postmenopausal chinese women. J Natl Cancer Inst, 2016, 108(10): djw103.
- 26. Arslan AA, Koenig KL, Lenner P, et al. Circulating estrogen metabolites and risk of breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev, 2014, 23(7): 1290-1297.
- 27. Sood D, Johnson N, Jain P, et al. CYP3A7*1C allele is associated with reduced levels of 2-hydroxylation pathway oestrogen metabolites. Br J Cancer, 2017, 116(3): 382-388.
- 28. Niwa T, Murayama N, Imagawa Y, et al. Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab Rev, 2015, 47(2): 89-110.
- 29. Cavalieri EL, Rogan EG. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol, 2011, 125(3-5): 169-180.
- 30. Liehr JG, Ricci MJ. 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci U S A, 1996, 93(8): 3294-3296.
- 31. Bradlow HL, Hershcopf R, Martuuci C, et al. 16 alpha-hydroxylation of estradiol: a possible risk marker for breast cancer. Ann N Y Acad Sci, 1986, 464: 138-151.
- 32. Kim SH, Lee SU, Kim MH, et al. Mitogenic estrogen metabolites alter the expression of 17 beta-estradiol-regulated proteins including heat shock proteins in human MCF-7 breast cancer cells. Mol Cells, 2005, 20(3): 378-384.
- 33. Osborne MP, Bradlow HL, Wong YC, et al. Upregulation of estradiol C16α-hydroxylation in human breast tissue: a potential biomarker of breast cancer risk. J Natl Cancer Inst, 1993, 85(23): 1917-1920.
- 34. 王俊玲, 黄思敏, 梁启瑶, 等. 雌激素的来源及其在骨代谢中的作用. 中国骨质疏松杂志, 2015, 21(6): 729-732.
- 35. Hall JE. Endocrinology of the menopause. Endocrinol Metab Clin North Am, 2015, 44(3): 485-496.
- 36. Goedecke JH, Tootla M, Keswell D. Ethnic differences in regional adipose tissue oestrogen receptor gene expression. Endocr Connect, 2019, 8(1): 32-38.
- 37. Savolainen H, Vihma V, Wang F, et al. Estrogen biosynthesis in breast adipose tissue during menstrual cycle in women with and without breast cancer. Gynecol Endocrinol, 2018, 34(12): 1039-1043.
- 38. Brown KA, Iyengar NM, Zhou XK, et al. Menopause is a determinant of breast aromatase expression and its associations with BMI, inflammation, and systemic markers. J Clin Endocrinol Metab, 2017, 102(5): 1692-1701.
- 39. Premenopausal Breast Cancer Collaborative Group, Schoemaker MJ, Nichols HB, et al. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol, 2018, 4(11): e181771.
- 40. Engin A. Obesity-associated breast cancer: analysis of risk factors. Adv Exp Med Biol, 2017, 960: 571-606.
- 41. 谢梅青, 陈蓉, 任慕兰. 中国绝经管理与绝经激素治疗指南(2018). 协和医学杂志, 2018, 9(6): 512-525.
- 42. Purohit A, Reed MJ. Regulation of estrogen synthesis in postmenopausal women. Steroids, 2002, 67(12): 979-983.
- 43. Dehal SS, Brodie AM, Kupfer D. The aromatase inactivator 4-hydroxyandrostenedione (4-OH-A) inhibits tamoxifen metabolism by rat hepatic cytochrome P-450 3A: potential for drug-drug interaction of tamoxifen and 4-OH-A in combined anti-breast cancer therapy. Drug Metab Dispos, 1999, 27(3): 389-394.
- 44. Avvaru SP, Noolvi MN, Aminbhavi TM, et al. Aromatase inhibitors evolution as potential class of drugs in the treatment of postmenopausal breast cancer women. Mini Rev Med Chem, 2018, 18(7): 609-621.
- 45. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA, 2002, 288(3): 321-333.
- 46. D'Alonzo M, Bounous VE, Villa M, et al. Current evidence of the oncological benefit-risk profile of hormone replacement therapy. Medicina (Kaunas), 2019, 55(9): pii: E573.
- 47. Li CI, Daling JR, Malone KE. Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998. J Clin Oncol, 2003, 21(1): 28-34.
- 48. Hartley MC, Mckinley BP, Rogers EA, et al. Differential expression of prognostic factors and effect on survival in young (≤40) breast cancer patients: a case-control study. Am Surg, 2006, 72(12): 1189-1194.
- 49. Eric I, Petek A, Kristek J, et al. Breast cancer in young women:pathologic and immunohistochemical features. Acta Clin Croat, 2018, 57(3): 497-502.
- 50. Cui Y, Deming SL, Shrubsole MJ, et al. Associations of hormone-related factors with breast cancer risk according to hormone receptor status among white and African American women. Clin Breast Cancer, 2014, 14(6): 417-425.
- 51. Tarone RE, Chu KC. The greater impact of menopause on ER- than ER+ breast cancer incidence: a possible explanation (United States). Cancer Causes Control, 2002, 13(1): 7-14.
- 52. Chung IY, Lee JW, Lee JS, et al. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer. PloS One, 2017, 12(3): e0170311.
- 53. Dunlap TL, Howell CE, Mukand N, et al. Red clover aryl hydrocarbon receptor (AhR) and estrogen receptor (ER) agonists enhance genotoxic estrogen metabolism. Chem Res Toxicol, 2017, 30(11): 2084-2092.
- 54. Paterni I, Granchi C, Katzenellenbogen JA, et al. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids, 2014, 90: 13-29.
- 55. Heldring N, Pike A, Andersson S, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev, 2007, 87(3): 905-931.
- 56. Willams C, Lin CY. Estrogen receptors in breast cancer: basic mechanisms and clinical implications. Ecancermedicalscience, 2013, 7: 370.
- 57. Giudice A, Barbieri A, BimonteI S, et al. Dissecting the prevention of estrogen-dependent breast carcinogenesis through Nrf2-dependent and independent mechanisms. Onco Targets Ther, 2019, 12: 4937-4953.
- 58. Kulkoyluoglu E, Arac A, Madak Z. Crosstalk between estrogen signaling and breast cancer metabolism. Trends in Endocrinol Metab, 2019, 30(1): 25-38.
- 59. Loboda A, Nebozhyn M, Klinghoffer R, et al. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genomics, 2010, 3: 26.
- 60. Dey N, De P, Leylang B. PI3K-AKT-mTOR inhibitors in breast cancers: from tumor cell signaling to clinical trials. Pharmacol Ther, 2017, 175: 91-106.
- 61. Yndestad S, Austreid E, Svanberg IR, et al. Activation of Akt characterizes estrogen receptor positive human breast cancers which respond to anthracyclines. Oncotarget, 2017, 8(25): 41227-41241.
- 62. Hayes MJ, Thomas D, Emmons A, et al. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res, 2008, 14(13): 4038-4044.
- 63. Bado I, Nikolos F, Rajapaksa G, et al. Somatic loss of estrogen receptor beta and p53 synergize to induce breast tumorigenesis. Breast Cancer Res, 2017, 19(1): 79.
- 64. Lu W, Katzenellenbogen BS. Estrogen receptor-β modulation of the ERα-p53 Loop regulating gene expression, proliferation, and apoptosis in breast cancer. Horm Cancer, 2017, 8(4): 230-242.
- 65. Yang J, Altahan A, Jones DT, et al. Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proc Natl Acad Sci U S A, 2015, 112(49): 15172-15177.
- 66. Huang B, Omoto Y, Iwase H, et al. Differential expression of estrogen receptor α, β1, and β2 in lobular and ductal breast cancer. Proc Natl Acad Sci U S A, 2014, 111(5): 1933-1938.