1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin, 2020, 70(1): 7-30.
|
2. |
Islami F, Goding Sauer A, Miller KD, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin, 2018, 68(1): 31-54.
|
3. |
Degasperi E, Colombo M. Distinctive features of hepatocellular carcinoma in non-alcoholic fatty liver disease. Lancet Gastroenterol Hepatol, 2016, 1(2): 156-164.
|
4. |
Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
|
5. |
Feng H, Fang F, Yuan L, et al. Downregulated expression of CFHL1 is associated with unfavorable prognosis in postoperative patients with hepatocellular carcinoma. Exp Ther Med, 2019, 17(5): 4073-4079.
|
6. |
Cao H, Xu Z, Wang J, et al. Functional role of SGK3 in PI3K/Pten driven liver tumor development. BMC Cancer, 2019, 19(1): 343.
|
7. |
Kristensen VN, Lingjærde OC, Russnes HG, et al. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer, 2014, 14(5): 299-313.
|
8. |
D’Angiolella V, Donato V, Forrester FM, et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell, 2012, 149(5): 1023-1034.
|
9. |
Engström Y, Eriksson S, Jildevik I, et al. Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem, 1985, 260(16): 9114-9116.
|
10. |
Wang J, Yi Y, Chen Y, et al. Potential mechanism of RRM2 for promoting Cervical Cancer based on weighted gene co-expression network analysis. Int J Med Sci, 2020, 17(15): 2362-2372.
|
11. |
Lu AG, Feng H, Wang PX, et al. Emerging roles of the ribonucleotide reductase M2 in colorectal cancer and ultraviolet-induced DNA damage repair. World J Gastroenterol, 2012, 18(34): 4704-4713.
|
12. |
Tang Q, Wu L, Xu M, et al. Osalmid, a novel identified RRM2 inhibitor, enhances radiosensitivity of esophageal cancer. Int J Radiat Oncol Biol Phys, 2020, 108(5): 1368-1379.
|
13. |
Zhang S, Yan L, Cui C, et al. Downregulation of RRM2 attenuates retroperitoneal liposarcoma progression via the Akt/mTOR/4EBP1 pathway: clinical, biological, and therapeutic significance. Onco Targets Ther, 2020, 13: 6523-6537.
|
14. |
Wang S, Wang XL, Wu ZZ, et al. Overexpression of RRM2 is related to poor prognosis in oral squamous cell carcinoma. Oral Dis, 2021, 27(2): 204-214.
|
15. |
Li S, Mai H, Zhu Y, et al. MicroRNA-4500 inhibits migration, invasion, and angiogenesis of breast cancer cells via RRM2-dependent MAPK signaling pathway. Mol Ther Nucleic Acids, 2020, 21: 278-289.
|
16. |
Feng H, Wang Q, Xiao W, et al. LncRNA TTN-AS1 regulates miR-524-5p and RRM2 to promote breast cancer progression. Onco Targets Ther, 2020, 13: 4799-4811.
|
17. |
Mazzu YZ, Armenia J, Nandakumar S, et al. Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer. Mol Oncol, 2020, 14(8): 1881-1897.
|
18. |
刘霞, 陈龙, 范丽萍, 等. 核糖核苷酸还原酶小亚基 M2 在多发性骨髓瘤患者中的表达及抑制肿瘤细胞增殖的相关机制. 中国实验血液学杂志, 2020, 28(2): 540-546.
|
19. |
Ye BL, Zheng R, Ruan XJ, et al. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway. Biochem Biophys Res Commun, 2018, 495(1): 414-420.
|
20. |
Liu LM, Xiong DD, Lin P, et al. DNA topoisomerase 1 and 2A function as oncogenes in liver cancer and may be direct targets of nitidine chloride. Int J Oncol, 2018, 53(5): 1897-1912.
|
21. |
Wu C, Lyu J, Yang EJ, et al. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nat Commun, 2018, 9(1): 3212.
|
22. |
Dauch D, Rudalska R, Cossa G, et al. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat Med, 2016, 22(7): 744-753.
|
23. |
Zhang X, Pan Y, Fu H, et al. Nucleolar and spindle associated protein 1 (NUSAP1) inhibits cell proliferation and enhances susceptibility to epirubicin in invasive breast cancer cells by regulating cyclin D kinase (CDK1) and DLGAP5 expression. Med Sci Monit, 2018, 24: 8553-8564.
|
24. |
Wang Y, Ju L, Xiao F, et al. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses liver cancer cell function. Exp Ther Med, 2019, 17(4): 2969-2978.
|
25. |
Yang XM, Cao XY, He P, et al. Overexpression of Rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing hippo signaling to promote cytokinesis. Gastroenterology, 2018, 155(4): 1233-1249.
|
26. |
Chen J, Xia H, Zhang X, et al. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma. J Hepatol, 2015, 62(6): 1287-1295.
|
27. |
Wu M, Liu Z, Zhang A, et al. Identification of key genes and pathways in hepatocellular carcinoma: A preliminary bioinformatics analysis. Medicine (Baltimore), 2019, 98(5): e14287.
|
28. |
Li B, Pu K, Wu X. Identifying novel biomarkers in hepatocellular carcinoma by weighted gene co-expression network analysis. J Cell Biochem, 2019, Feb 11. Online ahead of print.
|
29. |
Pai VC, Hsu CC, Chan TS, et al. ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3-β-catenin signaling. Oncogene, 2019, 38(8): 1340-1353.
|
30. |
Wang F, Chang Y, Li J, et al. Strong correlation between ASPM gene expression and HCV cirrhosis progression identified by co-expression analysis. Dig Liver Dis, 2017, 49(1): 70-76.
|
31. |
Ito Y, Takeda T, Sakon M, et al. Expression and prognostic role of cyclin-dependent kinase 1 (cdc2) in hepatocellular carcinoma. Oncology, 2000, 59(1): 68-74.
|
32. |
Zhou J, Han S, Qian W, et al. Metformin induces miR-378 to downregulate the CDK1, leading to suppression of cell proliferation in hepatocellular carcinoma. Onco Targets Ther, 2018, 11: 4451-4459.
|
33. |
Yang F, Cui P, Lu Y, et al. Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells. Stem Cell Res Ther, 2019, 10(1): 233.
|
34. |
Lian YF, Li SS, Huang YL, et al. Up-regulated and interrelated expressions of GINS subunits predict poor prognosis in hepatocellular carcinoma. Biosci Rep, 2018, 38(6): BSR20181178.
|
35. |
Lee B, Ha SY, Song DH, et al. High expression of ribonucleotide reductase subunit M2 correlates with poor prognosis of hepatocellular carcinoma. Gut Liver, 2014, 8(6): 662-668.
|
36. |
Wang Y, Zhi Q, Ye Q, et al. SCYL1-BP1 affects cell cycle arrest in human hepatocellular carcinoma cells via cyclin F and RRM2. Anticancer Agents Med Chem, 2016, 16(4): 440-446.
|
37. |
Satow R, Shitashige M, Kanai Y, et al. Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clin Cancer Res, 2010, 16(9): 2518-2528.
|
38. |
Ricardo-Lax I, Ramanan V, Michailidis E, et al. Hepatitis B virus induces RNR-R2 expression via DNA damage response activation. J Hepatol, 2015, 63(4): 789-796.
|
39. |
Liu X, Xu Z, Hou C, et al. Inhibition of hepatitis B virus replication by targeting ribonucleotide reductase M2 protein. Biochem Pharmacol, 2016, 103: 118-128.
|