1. |
Hu ZY, Xie N, Tian C, et al. Identifying circulating tumor DNA mutation profiles in metastatic breast cancer patients with multiline resistance. EBioMedicine, 2018, 32: 111-118.
|
2. |
Suppan C, Brcic I, Tiran V, et al. Untargeted assessment of tumor fractions in plasma for monitoring and prognostication from metastatic breast cancer patients undergoing systemic treatment. Cancers (Basel), 2019, 11(8): 1171.
|
3. |
陈丽婷, 周剑峰. 液体活检在肿瘤临床精准诊断和预后判断中的应用. 内科急危重症杂志, 2017, 23(2): 99-101.
|
4. |
Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease - latest advances and implications for cure. Nat Rev Clin Oncol, 2019, 16(7): 409-424.
|
5. |
Coombes RC, Page K, Salari R, et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res, 2019, 25(14): 4255-4263.
|
6. |
Massihnia D, Perez A, Bazan V, et al. A headlight on liquid biopsies: a challenging tool for breast cancer management. Tumour Biol, 2016, 37(4): 4263-4273.
|
7. |
范昭璇, 赵亮, 张学记. 循环肿瘤DNA的检测: 从数字化到测序. 化学进展, 2019, 31(10): 1384-1395.
|
8. |
Board RE, Wardley AM, Dixon JM, et al. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat, 2010, 120(2): 461-467.
|
9. |
Rodriguez BJ, Córdoba GD, Aranda AG, et al. Detection of TP53 and PIK3CA mutations in circulating tumor DNA using next-generation sequencing in the screening process for early breast cancer diagnosis. J Clin Med, 2019, 8(8): 1183.
|
10. |
Garcia-Murillas I, Chopra N, Comino-Méndez I, et al. Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol, 2019, 5(10): 1473-1478.
|
11. |
Mesquita A, Costa JL, Schmitt F. Utility of circulating tumor dna in different clinical scenarios of breast cancer. Cancers (Basel), 2020, 12(12): 3797.
|
12. |
Pasha HA, Rezk NA, Riad MA. Circulating cell free nuclear DNA, mitochondrial DNA and global DNA methylation: potential noninvasive biomarkers for breast cancer diagnosis. Cancer Invest, 2019, 37(9): 432-439.
|
13. |
Shang M, Chang C, Pei Y, et al. Potential management of circulating tumor DNA as a biomarker in triple-negative breast cancer. J Cancer, 2018, 9(24): 4627-4634.
|
14. |
缪亚军, 张亮, 杨莉. 循环肿瘤DNA对晚期乳腺癌疗效判断的价值. 交通医学, 2019, 33(3): 265-267.
|
15. |
Rohanizadegan M. Analysis of circulating tumor DNA in breast cancer as a diagnostic and prognostic biomarker. Cancer Genet, 2018, 228-229: 159-168.
|
16. |
Heitzer E, Haque IS, Roberts CES, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet, 2019, 20(2): 71-88.
|
17. |
Chin RI, Chen K, Usmani A, et al. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA). Mol Diagn Ther, 2019, 23(3): 311-331.
|
18. |
Liao H, Li H. Advances in the detection technologies and clinical applications of circulating tumor DNA in metastatic breast cancer. Cancer Manag Res, 2020, (12): 3547-3560.
|
19. |
Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol, 2016, 34(5): 547-555.
|
20. |
Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med, 2017, 9(403): eaan2415.
|
21. |
Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018, 359(6378): 926-930.
|
22. |
McDonald BR, Contente-Cuomo T, Sammut SJ, et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci Transl Med, 2019, 11(504): eaax7392.
|
23. |
Chiu RWK. Fastidious detection of circulating tumor DNA mutations in residual breast cancer disease for ultimate analytical sensitivity and specificity. Clin Chem, 2020, 66(7): 866-867.
|
24. |
Hu P, Zhang S, Wu T, et al. Fe-au nanoparticle-coupling for ultrasensitive detections of circulating tumor DNA. Adv Mater, 2018, 30(31): e1801690.
|
25. |
Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med, 2012, 4(162): 162ra154.
|
26. |
Olsson E, Winter C, George A, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med, 2015, 7(8): 1034-1047.
|
27. |
Tzanikou E, Lianidou E. The potential of ctDNA analysis in breast cancer. Crit Rev Clin Lab Sci, 2020, 57(1): 54-72.
|
28. |
Miyamura Y, Kagara N, Miyake T, et al. Drainage of tumor-derived DNA into sentinel lymph nodes in breast cancer patients. Pathol Oncol Res, 2019, 25(4): 1635-1643.
|
29. |
Hrebien S, Citi V, Garcia-Murillas I, et al. Early ctDNA dynamics as a surrogate for progression-free survival in advanced breast cancer in the BEECH trial. Ann Oncol, 2019, 30(6): 945-952.
|
30. |
Lee JH, Long GV, Menzies AM, et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol, 2018, 4(5): 717-721.
|
31. |
Chung JH, Pavlick D, Hartmaier R, et al. Hybrid capture-based genomic profiling of circulating tumor DNA from patients with estrogen receptor-positive metastatic breast cancer. Ann Oncol, 2017, 28(11): 2866-2873.
|
32. |
Jacot W, Dalenc F, Lopez-Crapez E, et al. PIK3CA mutations early persistence in cell-free tumor DNA as a negative prognostic factor in metastatic breast cancer patients treated with hormonal therapy. Breast Cancer Res Treat, 2019, 177(3): 659-667.
|
33. |
Schiavon G, Hrebien S, Garcia-Murillas I, et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med, 2015, 7(313): 313ra182.
|
34. |
Li S, Wang X, Li Y, et al. Non-invasive analysis of tumor mutation profiles and druggable mutations by sequencing of cell free DNA of Chinese metastatic breast cancer patients. Thorac Cancer, 2019, 10(4): 807-814.
|
35. |
Zhang L, Liang Y, Li S, et al. The interplay of circulating tumor DNA and chromatin modification, therapeutic resistance, and metastasis. Mol Cancer, 2019, 18(1): 36.
|