Citation: 袁放, 马青松, 宋彬. 肝癌的影像学研究进展及其在多学科诊疗中的应用. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2021, 28(3): 297-302. doi: 10.7507/1007-9424.202012093 Copy
1. | Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314. |
2. | Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132. |
3. | Caruso S, O'Brien DR, Cleary SP, et al. Genetics of HCC: Novel approaches to explore molecular diversity. Hepatology, 2020 May 28. [Online ahead of print]. |
4. | 陈孝平, 张志伟. 肝癌多学科综合治疗团队建立与运作. 中国实用外科杂志, 2014, 34(8): 685-687. |
5. | 四川大学华西医院肝癌MDT团队, 严律南, 文天夫. 肝细胞肝癌全程多学科规范化管理: 华西医院多学科专家共识(第二版). 中国普外基础与临床杂志, 2020, 27(9): 1062-1077. |
6. | Brown G. Specialist multidisciplinary team working in the treatment of cancer. BMJ, 2012, 344: e2780. |
7. | Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ, 2020, 371: m3544. |
8. | Kudo M. Defect reperfusion imaging with Sonazoid®: a breakthrough in hepatocellular carcinoma. Liver Cancer, 2016, 5(1): 1-7. |
9. | Lv P, Lin XZ, Chen K, et al. Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol, 2012, 22(10): 2117-2124. |
10. | 胡兴和, 王渝. 宝石 CT 能谱成像技术在原发性小肝癌诊断中的临床应用价值. 实用医技杂志, 2012, 19(7): 702-703. |
11. | Lv P, Lin XZ, Li J, et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology, 2011, 259(3): 720-729. |
12. | Wang Q, Shi G, Qi X, et al. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization. Eur J Radiol, 2014, 83(10): 1759-1764. |
13. | 刘常绪, 张成琪, 王新怡, 等. 能谱 CT 在肝细胞癌与肝内肿块型胆管细胞癌鉴别诊断中的应用价值. 山东大学学报(医学版), 2014, 52(12): 94-98. |
14. | Liu YS, Chuang MT, Tsai YS, et al. Nitroglycerine use in transcatheter arterial (chemo)embolization in patients with hepatocellular carcinoma and dual-energy CT assessment of Lipiodol retention. Eur Radiol, 2012, 22(10): 2193-2200. |
15. | Dai X, Schlemmer HP, Schmidt B, et al. Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol, 2013, 82(2): 327-334. |
16. | Park MS, Kim S, Patel J, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology, 2012, 56(1): 140-148. |
17. | Park MJ, Kim YK, Lee MW, et al. Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology, 2012, 264(3): 761-770. |
18. | Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology, 2014, 270(3): 758-767. |
19. | 李玉博, 高雪梅, 程敬亮, 等. 基于体素内不相干运动扩散加权成像在肝细胞癌术前分级中的应用分析. 临床放射学杂志, 2015, 34(3): 389-393. |
20. | Cao L, Chen J, Duan T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade. Quant Imaging Med Surg, 2019, 9(4): 590-602. |
21. | 曹立坤, 段婷, 陈婕, 等. 扩散峰度成像预测肝细胞癌切除术后早期复发的价值. 四川大学学报(医学版), 2018, 49(6): 88-93. |
22. | Rosenkrantz AB, Sigmund EE, Winnick A, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants. Magn Reson Imaging, 2012, 30(10): 1534-1540. |
23. | Guo R, Yang SH, Lu F, et al. Evaluation of intratumoral heterogeneity by using diffusion kurtosis imaging and stretched exponential diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. Quant Imaging Med Surg, 2019, 9(9): 1566-1578. |
24. | Jia Y, Cai H, Wang M, et al. Diffusion kurtosis MR imaging versus conventional diffusion-weighted imaging for distinguishing hepatocellular carcinoma from benign hepatic nodules. Contrast Media Mol Imaging, 2019, 2019: 2030147. |
25. | 刘刚, 李天然, 杨立. 肝癌的影像学研究进展. 前沿科学, 2017, 11(1): 33-48. |
26. | Kitao A, Zen Y, Matsui O, et al. Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR Imaging—correlation with molecular transporters and histopathologic features. Radiology, 2010, 256(3): 817-826. |
27. | Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int, 2017, 11(4): 317-370. |
28. | Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis. World J Gastroenterol, 2018, 24(22): 2348-2362. |
29. | Liu X, Jiang H, Chen J, et al. Gadoxetic acid disodium-enhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: a meta-analysis. Liver Transpl, 2017, 23(12): 1505-1518. |
30. | Imai Y, Katayama K, Hori M, et al. Prospective comparison of Gd-EOB-DTPA-enhanced MRI with dynamic CT for detecting recurrence of HCC after radiofrequency ablation. Liver Cancer, 2017, 6(4): 349-359. |
31. | Nishie A, Tajima T, Ishigami K, et al. Detection of hepatocellular carcinoma (HCC) using super paramagnetic iron oxide (SPIO)-enhanced MRI: Added value of diffusion-weighted imaging (DWI). J Magn Reson Imaging, 2010, 31(2): 373-382. |
32. | Kim YK, Kim CS, Han YM, et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma. Clin Radiol, 2010, 65(5): 358-365. |
33. | Park HS, Lee JM, Kim SH, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging, 2009, 29(2): 328-335. |
34. | 张宏霞, 黎金葵, 王梦书, 等. 磁共振成像技术在肝细胞肝癌的研究进展. 中华肝脏病杂志, 2019, 27(2): 153-156. |
35. | An C, Park MS, Kim D, et al. Added value of subtraction imaging in detecting arterial enhancement in small (<3 cm) hepatic nodules on dynamic contrast-enhanced MRI in patients at high risk of hepatocellular carcinoma. Eur Radiol, 2013, 23(4): 924-930. |
36. | Rao SX, Chen CZ, Liu H, et al. Three-dimensional whole-liver perfusion magnetic resonance imaging in patients with hepatocellular carcinomas and colorectal hepatic metastases. BMC Gastroenterol, 2013, 13: 53. |
37. | Patterson AJ, Priest AN, Bowden DJ, et al. Quantitative BOLD imaging at 3T: temporal changes in hepatocellular carcinoma and fibrosis following oxygen challenge. J Magn Reson Imaging, 2016, 44(3): 739-744. |
38. | Bane O, Besa C, Wagner M, et al. Feasibility and reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn Reson Imaging, 2016, 43(4): 866-876. |
39. | Yuan F, Song B, Huang Z, et al. Glucose as a stimulation agent in the BOLD functional magnetic resonance imaging for liver cirrhosis and hepatocellular carcinoma: a feasibility study. Abdom Radiol (NY), 2018, 43(3): 607-612. |
40. | Mathew RP, Venkatesh SK. Imaging of hepatic fibrosis. Curr Gastroenterol Rep, 2018, 20(10): 45. |
41. | 郑兴菊, 郑捷, 孙家瑜, 等. 磁共振 T1ρ 成像在原发性肝癌诊断中应用的初步探索. 中国普外基础与临床杂志, 2015, 22(6): 743-745. |
42. | 陈鹏, 赵卫东, 张红宇, 等. 肝细胞癌患者 1.5 T 氢质子磁共振波谱分析. 中国癌症杂志, 2010, 20(1): 55-58. |
43. | 岳倩倩, 王新怡. MRI 功能成像在小肝癌诊断中的应用进展. 中华消化病与影像杂志(电子版), 2016, 6(4): 180-183. |
44. | Wilson SR, Lyshchik A, Piscaglia F, et al. CEUS LI-RADS: algorithm, implementation, and key differences from CT/MRI. Abdom Radiol (NY), 2018, 43(1): 127-142. |
45. | Chernyak V, Santillan CS, Papadatos D, et al. LI-RADS® algorithm: CT and MRI. Abdom Radiol (NY), 2018, 43(1): 111-126. |
46. | Tang A, Fowler KJ, Chernyak V, et al. LI-RADS and transplantation for hepatocellular carcinoma. Abdom Radiol (NY), 2018, 43(1): 193-202. |
47. | Choi SH, Lee SS, Park SH, et al. LI-RADS classification and prognosis of primary liver cancers at gadoxetic acid-enhanced MRI. Radiology, 2019, 290(2): 388-397. |
48. | Renzulli M, Clemente A, Brocchi S, et al. LI-RADS: a great opportunity not to be missed. Eur J Gastroenterol Hepatol, 2019, 31(3): 283-288. |
49. | Elsayes KM, Fowler KJ, Chernyak V, et al. User and system pitfalls in liver imaging with LI-RADS. J Magn Reson Imaging, 2019, 50(6): 1673-1686. |
50. | Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology, 2018, 289(3): 816-830. |
51. | Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 2018, 68(2): 723-750. |
52. | Baumann M, Hölscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol, 2003, 69(2): 121-125. |
53. | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. |
54. | 胡文墨, 杨华瑜, 毛一雷. 基于人工智能的影像组学在肝脏疾病中的应用. 中华普通外科杂志, 2019, 34(7): 646-648. |
55. | Raman SP, Schroeder JL, Huang P, et al. Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial frequency measurements—a work in progress. J Comput Assist Tomogr, 2015, 39(3): 383-395. |
56. | Canellas R, Mehrkhani F, Patino M, et al. Characterization of portal vein thrombosis (neoplastic versus bland) on CT images using software-based texture analysis and thrombus density (hounsfield units). AJR Am J Roentgenol, 2016, 207(5): W81-W87. |
57. | Bakr S, Echegaray S, Shah R, et al. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham), 2017, 4(4): 041303. |
58. | Feng ST, Jia Y, Liao B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol, 2019, 29(9): 4648-4659. |
59. | Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol, 2019, 29(7): 3595-3605. |
60. | Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol, 2019, 70(6): 1133-1144. |
61. | Yang L, Gu D, Wei J, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Liver Cancer, 2019, 8(5): 373-386. |
62. | 韩玉齐, 魏靖伟, 蒋涵羽, 等. 影像组学研究进展及其在肝癌中的临床应用. 中国科学: 生命科学, 2020, 50(11): 1309-1320. |
63. | Li M, Fu S, Zhu Y, et al. Computed tomography texture analysis to facilitate therapeutic decision making in hepatocellular carcinoma. Oncotarget, 2016, 7(11): 13248-13259. |
64. | Bowen SR, Chapman TR, Borgman J, et al. Measuring total liver function on sulfur colloid SPECT/CT for improved risk stratification and outcome prediction of hepatocellular carcinoma patients. EJNMMI Res, 2016, 6(1): 57. |
65. | Fu S, Chen S, Liang C, et al. Texture analysis of intermediate-advanced hepatocellular carcinoma: prognosis and patients’ selection of transcatheter arterial chemoembolization and sorafenib. Oncotarget, 2017, 8(23): 37855-37865. |
66. | Villa E, Critelli R, Lei B, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut, 2016, 65(5): 861-869. |
67. | European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol, 2012, 56(4): 908-943. |
68. | Lee SM, Lee JM, Ahn SJ, et al. LI-RADS version 2017 versus version 2018: diagnosis of hepatocellular carcinoma on gadoxetate disodium-enhanced MRI. Radiology, 2019, 292(3): 655-663. |
69. | Fu S, Wei J, Zhang J, et al. Selection between liver resection versus transarterial chemoembolization in hepatocellular carcinoma: a multicenter study. Clin Transl Gastroenterol, 2019, 10(8): e00070. |
70. | Akai H, Yasaka K, Kunimatsu A, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging, 2018, 99(10): 643-651. |
71. | 金玉梅, 宋彬, 黄子星. 肝细胞癌微血管侵犯的分子影像学研究进展. 中国普外基础与临床杂志, 2019, 26(5): 602-605. |
72. | De Robertis R, Tinazzi Martini P, Demozzi E, et al. Prognostication and response assessment in liver and pancreatic tumors: the new imaging. World J Gastroenterol, 2015, 21(22): 6794-6808. |
73. | Taouli B, Johnson RS, Hajdu CH, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. AJR Am J Roentgenol, 2013, 201(4): 795-800. |
74. | Yuan ZG, Wang ZY, Xia MY, et al. Comparison of diffusion kurtosis imaging versus diffusion weighted imaging in predicting the recurrence of early stage single nodules of hepatocellular carcinoma treated by radiofrequency ablation. Cancer Imaging, 2019, 19(1): 30. |
75. | Li B, Xu A, Huang Y, et al. Oxygen-challenge blood oxygen level-dependent magnetic resonance imaging for evaluation of early change of hepatocellular carcinoma to chemoembolization: A Feasibility Study. Acad Radiol, 2020: S1076-6332(20)30371-8. |
76. | Zhang LJ, Zhang Z, Xu J, et al. Carbogen gas-challenge blood oxygen level-dependent magnetic resonance imaging in hepatocellular carcinoma: Initial results. Oncol Lett, 2015, 10(4): 2009-2014. |
- 1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314.
- 2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
- 3. Caruso S, O'Brien DR, Cleary SP, et al. Genetics of HCC: Novel approaches to explore molecular diversity. Hepatology, 2020 May 28. [Online ahead of print].
- 4. 陈孝平, 张志伟. 肝癌多学科综合治疗团队建立与运作. 中国实用外科杂志, 2014, 34(8): 685-687.
- 5. 四川大学华西医院肝癌MDT团队, 严律南, 文天夫. 肝细胞肝癌全程多学科规范化管理: 华西医院多学科专家共识(第二版). 中国普外基础与临床杂志, 2020, 27(9): 1062-1077.
- 6. Brown G. Specialist multidisciplinary team working in the treatment of cancer. BMJ, 2012, 344: e2780.
- 7. Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ, 2020, 371: m3544.
- 8. Kudo M. Defect reperfusion imaging with Sonazoid®: a breakthrough in hepatocellular carcinoma. Liver Cancer, 2016, 5(1): 1-7.
- 9. Lv P, Lin XZ, Chen K, et al. Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol, 2012, 22(10): 2117-2124.
- 10. 胡兴和, 王渝. 宝石 CT 能谱成像技术在原发性小肝癌诊断中的临床应用价值. 实用医技杂志, 2012, 19(7): 702-703.
- 11. Lv P, Lin XZ, Li J, et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology, 2011, 259(3): 720-729.
- 12. Wang Q, Shi G, Qi X, et al. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization. Eur J Radiol, 2014, 83(10): 1759-1764.
- 13. 刘常绪, 张成琪, 王新怡, 等. 能谱 CT 在肝细胞癌与肝内肿块型胆管细胞癌鉴别诊断中的应用价值. 山东大学学报(医学版), 2014, 52(12): 94-98.
- 14. Liu YS, Chuang MT, Tsai YS, et al. Nitroglycerine use in transcatheter arterial (chemo)embolization in patients with hepatocellular carcinoma and dual-energy CT assessment of Lipiodol retention. Eur Radiol, 2012, 22(10): 2193-2200.
- 15. Dai X, Schlemmer HP, Schmidt B, et al. Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol, 2013, 82(2): 327-334.
- 16. Park MS, Kim S, Patel J, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology, 2012, 56(1): 140-148.
- 17. Park MJ, Kim YK, Lee MW, et al. Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology, 2012, 264(3): 761-770.
- 18. Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology, 2014, 270(3): 758-767.
- 19. 李玉博, 高雪梅, 程敬亮, 等. 基于体素内不相干运动扩散加权成像在肝细胞癌术前分级中的应用分析. 临床放射学杂志, 2015, 34(3): 389-393.
- 20. Cao L, Chen J, Duan T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade. Quant Imaging Med Surg, 2019, 9(4): 590-602.
- 21. 曹立坤, 段婷, 陈婕, 等. 扩散峰度成像预测肝细胞癌切除术后早期复发的价值. 四川大学学报(医学版), 2018, 49(6): 88-93.
- 22. Rosenkrantz AB, Sigmund EE, Winnick A, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants. Magn Reson Imaging, 2012, 30(10): 1534-1540.
- 23. Guo R, Yang SH, Lu F, et al. Evaluation of intratumoral heterogeneity by using diffusion kurtosis imaging and stretched exponential diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. Quant Imaging Med Surg, 2019, 9(9): 1566-1578.
- 24. Jia Y, Cai H, Wang M, et al. Diffusion kurtosis MR imaging versus conventional diffusion-weighted imaging for distinguishing hepatocellular carcinoma from benign hepatic nodules. Contrast Media Mol Imaging, 2019, 2019: 2030147.
- 25. 刘刚, 李天然, 杨立. 肝癌的影像学研究进展. 前沿科学, 2017, 11(1): 33-48.
- 26. Kitao A, Zen Y, Matsui O, et al. Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR Imaging—correlation with molecular transporters and histopathologic features. Radiology, 2010, 256(3): 817-826.
- 27. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int, 2017, 11(4): 317-370.
- 28. Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis. World J Gastroenterol, 2018, 24(22): 2348-2362.
- 29. Liu X, Jiang H, Chen J, et al. Gadoxetic acid disodium-enhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: a meta-analysis. Liver Transpl, 2017, 23(12): 1505-1518.
- 30. Imai Y, Katayama K, Hori M, et al. Prospective comparison of Gd-EOB-DTPA-enhanced MRI with dynamic CT for detecting recurrence of HCC after radiofrequency ablation. Liver Cancer, 2017, 6(4): 349-359.
- 31. Nishie A, Tajima T, Ishigami K, et al. Detection of hepatocellular carcinoma (HCC) using super paramagnetic iron oxide (SPIO)-enhanced MRI: Added value of diffusion-weighted imaging (DWI). J Magn Reson Imaging, 2010, 31(2): 373-382.
- 32. Kim YK, Kim CS, Han YM, et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma. Clin Radiol, 2010, 65(5): 358-365.
- 33. Park HS, Lee JM, Kim SH, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging, 2009, 29(2): 328-335.
- 34. 张宏霞, 黎金葵, 王梦书, 等. 磁共振成像技术在肝细胞肝癌的研究进展. 中华肝脏病杂志, 2019, 27(2): 153-156.
- 35. An C, Park MS, Kim D, et al. Added value of subtraction imaging in detecting arterial enhancement in small (<3 cm) hepatic nodules on dynamic contrast-enhanced MRI in patients at high risk of hepatocellular carcinoma. Eur Radiol, 2013, 23(4): 924-930.
- 36. Rao SX, Chen CZ, Liu H, et al. Three-dimensional whole-liver perfusion magnetic resonance imaging in patients with hepatocellular carcinomas and colorectal hepatic metastases. BMC Gastroenterol, 2013, 13: 53.
- 37. Patterson AJ, Priest AN, Bowden DJ, et al. Quantitative BOLD imaging at 3T: temporal changes in hepatocellular carcinoma and fibrosis following oxygen challenge. J Magn Reson Imaging, 2016, 44(3): 739-744.
- 38. Bane O, Besa C, Wagner M, et al. Feasibility and reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn Reson Imaging, 2016, 43(4): 866-876.
- 39. Yuan F, Song B, Huang Z, et al. Glucose as a stimulation agent in the BOLD functional magnetic resonance imaging for liver cirrhosis and hepatocellular carcinoma: a feasibility study. Abdom Radiol (NY), 2018, 43(3): 607-612.
- 40. Mathew RP, Venkatesh SK. Imaging of hepatic fibrosis. Curr Gastroenterol Rep, 2018, 20(10): 45.
- 41. 郑兴菊, 郑捷, 孙家瑜, 等. 磁共振 T1ρ 成像在原发性肝癌诊断中应用的初步探索. 中国普外基础与临床杂志, 2015, 22(6): 743-745.
- 42. 陈鹏, 赵卫东, 张红宇, 等. 肝细胞癌患者 1.5 T 氢质子磁共振波谱分析. 中国癌症杂志, 2010, 20(1): 55-58.
- 43. 岳倩倩, 王新怡. MRI 功能成像在小肝癌诊断中的应用进展. 中华消化病与影像杂志(电子版), 2016, 6(4): 180-183.
- 44. Wilson SR, Lyshchik A, Piscaglia F, et al. CEUS LI-RADS: algorithm, implementation, and key differences from CT/MRI. Abdom Radiol (NY), 2018, 43(1): 127-142.
- 45. Chernyak V, Santillan CS, Papadatos D, et al. LI-RADS® algorithm: CT and MRI. Abdom Radiol (NY), 2018, 43(1): 111-126.
- 46. Tang A, Fowler KJ, Chernyak V, et al. LI-RADS and transplantation for hepatocellular carcinoma. Abdom Radiol (NY), 2018, 43(1): 193-202.
- 47. Choi SH, Lee SS, Park SH, et al. LI-RADS classification and prognosis of primary liver cancers at gadoxetic acid-enhanced MRI. Radiology, 2019, 290(2): 388-397.
- 48. Renzulli M, Clemente A, Brocchi S, et al. LI-RADS: a great opportunity not to be missed. Eur J Gastroenterol Hepatol, 2019, 31(3): 283-288.
- 49. Elsayes KM, Fowler KJ, Chernyak V, et al. User and system pitfalls in liver imaging with LI-RADS. J Magn Reson Imaging, 2019, 50(6): 1673-1686.
- 50. Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology, 2018, 289(3): 816-830.
- 51. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 2018, 68(2): 723-750.
- 52. Baumann M, Hölscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol, 2003, 69(2): 121-125.
- 53. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
- 54. 胡文墨, 杨华瑜, 毛一雷. 基于人工智能的影像组学在肝脏疾病中的应用. 中华普通外科杂志, 2019, 34(7): 646-648.
- 55. Raman SP, Schroeder JL, Huang P, et al. Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial frequency measurements—a work in progress. J Comput Assist Tomogr, 2015, 39(3): 383-395.
- 56. Canellas R, Mehrkhani F, Patino M, et al. Characterization of portal vein thrombosis (neoplastic versus bland) on CT images using software-based texture analysis and thrombus density (hounsfield units). AJR Am J Roentgenol, 2016, 207(5): W81-W87.
- 57. Bakr S, Echegaray S, Shah R, et al. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham), 2017, 4(4): 041303.
- 58. Feng ST, Jia Y, Liao B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol, 2019, 29(9): 4648-4659.
- 59. Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol, 2019, 29(7): 3595-3605.
- 60. Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol, 2019, 70(6): 1133-1144.
- 61. Yang L, Gu D, Wei J, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Liver Cancer, 2019, 8(5): 373-386.
- 62. 韩玉齐, 魏靖伟, 蒋涵羽, 等. 影像组学研究进展及其在肝癌中的临床应用. 中国科学: 生命科学, 2020, 50(11): 1309-1320.
- 63. Li M, Fu S, Zhu Y, et al. Computed tomography texture analysis to facilitate therapeutic decision making in hepatocellular carcinoma. Oncotarget, 2016, 7(11): 13248-13259.
- 64. Bowen SR, Chapman TR, Borgman J, et al. Measuring total liver function on sulfur colloid SPECT/CT for improved risk stratification and outcome prediction of hepatocellular carcinoma patients. EJNMMI Res, 2016, 6(1): 57.
- 65. Fu S, Chen S, Liang C, et al. Texture analysis of intermediate-advanced hepatocellular carcinoma: prognosis and patients’ selection of transcatheter arterial chemoembolization and sorafenib. Oncotarget, 2017, 8(23): 37855-37865.
- 66. Villa E, Critelli R, Lei B, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut, 2016, 65(5): 861-869.
- 67. European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol, 2012, 56(4): 908-943.
- 68. Lee SM, Lee JM, Ahn SJ, et al. LI-RADS version 2017 versus version 2018: diagnosis of hepatocellular carcinoma on gadoxetate disodium-enhanced MRI. Radiology, 2019, 292(3): 655-663.
- 69. Fu S, Wei J, Zhang J, et al. Selection between liver resection versus transarterial chemoembolization in hepatocellular carcinoma: a multicenter study. Clin Transl Gastroenterol, 2019, 10(8): e00070.
- 70. Akai H, Yasaka K, Kunimatsu A, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging, 2018, 99(10): 643-651.
- 71. 金玉梅, 宋彬, 黄子星. 肝细胞癌微血管侵犯的分子影像学研究进展. 中国普外基础与临床杂志, 2019, 26(5): 602-605.
- 72. De Robertis R, Tinazzi Martini P, Demozzi E, et al. Prognostication and response assessment in liver and pancreatic tumors: the new imaging. World J Gastroenterol, 2015, 21(22): 6794-6808.
- 73. Taouli B, Johnson RS, Hajdu CH, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. AJR Am J Roentgenol, 2013, 201(4): 795-800.
- 74. Yuan ZG, Wang ZY, Xia MY, et al. Comparison of diffusion kurtosis imaging versus diffusion weighted imaging in predicting the recurrence of early stage single nodules of hepatocellular carcinoma treated by radiofrequency ablation. Cancer Imaging, 2019, 19(1): 30.
- 75. Li B, Xu A, Huang Y, et al. Oxygen-challenge blood oxygen level-dependent magnetic resonance imaging for evaluation of early change of hepatocellular carcinoma to chemoembolization: A Feasibility Study. Acad Radiol, 2020: S1076-6332(20)30371-8.
- 76. Zhang LJ, Zhang Z, Xu J, et al. Carbogen gas-challenge blood oxygen level-dependent magnetic resonance imaging in hepatocellular carcinoma: Initial results. Oncol Lett, 2015, 10(4): 2009-2014.