- Department of Liver Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China;
Citation: ZHANG Weizhi, LIU Lianxin. Research status and prospects of ferroptosis in hepatocellular carcinoma and its drug resistance. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2022, 29(5): 694-700. doi: 10.7507/1007-9424.202106100 Copy
1. | Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ, 2015, 22(1): 58-73. |
2. | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072. |
3. | Hentze MW, Muckenthaler MU, Galy B, et al. Two to tango: regulation of mammalian iron metabolism. Cell, 2010, 142(1): 24-38. |
4. | Shen Z, Liu T, Li Y, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 2018, 12(11): 11355-11365. |
5. | 中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版). 中国实用外科杂志, 2020, 40(2): 121-138. |
6. | Dimri M, Satyanarayana A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers (Basel), 2020, 12(2): 491. doi: 10.3390/cancers12020491. |
7. | Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol, 2018, 15(12): 738-752. |
8. | Gong Y, Fan Z, Luo G, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer, 2019, 18(1): 100. doi: 10.1186/s12943-019-1029-8. |
9. | Allaire M, Rautou PE, Codogno P, et al. Autophagy in liver diseases: Time for translation? J Hepatol, 2019, 70(5): 985-998. |
10. | Miotto G, Rossetto M, Di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol, 2020, 28: 101328. doi: 10.1016/j.redox.2019.101328. |
11. | Louandre C, Marcq I, Bouhlal H, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett, 2015, 356(2PtB): 971-977. |
12. | Wang J, Shanmugam A, Markand S, et al. Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc-, the Na+-independent glutamate-cystine exchanger. Free Radic Biol Med, 2015, 86: 25-36. |
13. | Pal A, Fontanilla D, Gopalakrishnan A, et al. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol, 2012, 682(1-3): 12-20. |
14. | Bai T, Lei P, Zhou H, et al. Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med, 2019, 23(11): 7349-7359. |
15. | Patel SJ, Frey AG, Palenchar DJ, et al. A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol, 2019, 15(9): 872-881. |
16. | Protchenko O, Baratz E, Jadhav S, et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology, 2021, 73(3): 1176-1193. |
17. | Zhang J, Zhang X, Li J, et al. Systematic analysis of the ABC transporter family in hepatocellular carcinoma reveals the importance of ABCB6 in regulating ferroptosis. Life Sci, 2020, 257: 118131. doi: 10.1016/j.lfs.2020.118131. |
18. | Yuan H, Li X, Zhang X, et al. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun, 2016, 478(2): 838-844. |
19. | Wang L, Cai H, Hu Y, et al. A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis, 2018, 9(10): 1005. doi: 10.1038/s41419-018-1063-2. |
20. | Yang Y, Lin J, Guo S, et al. RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int, 2020, 20(1): 587. doi: 10.1186/s12935-020-01689-8. |
21. | Wang Q, Guo Y, Wang W, et al. RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp Cell Res, 2021, 399(1): 112453. doi: 10.1016/j.yexcr.2020.112453. |
22. | Dai C, Chen X, Li J, et al. Transcription factors in ferroptotic cell death. Cancer Gene Ther, 2020, 27(9): 645-656. |
23. | Bai T, Wang S, Zhao Y, et al. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun, 2017, 491(4): 919-925. |
24. | Ou W, Mulik RS, Anwar A, et al. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic Biol Med, 2017, 112: 597-607. |
25. | Tang H, Chen D, Li C, et al. Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells. Int J Pharm, 2019, 572: 118782. doi: 10.1016/j.ijpharm.2019.118782. |
26. | Qi W, Li Z, Xia L, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep, 2019, 9(1): 16185. doi: 10.1038/s41598-019-52837-8. |
27. | Orso F, Quirico L, Dettori D, et al. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol, 2020, 60: 214-224. |
28. | Bai T, Liang R, Zhu R, et al. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol, 2020, 235(7-8): 5637-5648. |
29. | Babu KR, Muckenthaler MU. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci Rep, 2019, 9(1): 1518. doi: 10.1038/s41598-018-35947-7. |
30. | Xu Q, Zhou L, Yang G, et al. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol Int, 2020, 44(11): 2344-2356. |
31. | Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545): 57-62. |
32. | Ou Y, Wang SJ, Li D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A, 2016, 113(44): E6806-E6812. doi: 10.1073/pnas.1607152113. |
33. | Xie Y, Zhu S, Song X, et al. The Tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep, 2017, 20(7): 1692-1704. |
34. | Leu JI, Murphy ME, George DL. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc Natl Acad Sci U S A, 2019, 116(17): 8390-8396. |
35. | Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1): 173-184. |
36. | Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature, 2019, 575(7782): 299-309. |
37. | Oikawa T. Cancer Stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology, 2016, 64(2): 645-651. |
38. | Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther, 2020, 5(1): 8. doi: 10.1038/s41392-020-0110-5. |
39. | Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer, 2019, 19(7): 405-414. |
40. | Taylor WR, Fedorka SR, Gad I, et al. Small-molecule ferroptotic agents with potential to selectively target cancer stem cells. Sci Rep, 2019, 9(1): 5926. doi: 10.1038/s41598-019-42251-5. |
41. | Hata AN, Niederst MJ, Archibald HL, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med, 2016, 22(3): 262-269. |
42. | Jiang M, Qiao M, Zhao C, et al. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res, 2020, 9(4): 1569-1584. |
43. | Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679): 247-250. |
44. | Sun X, Niu X, Chen R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016, 64(2): 488-500. |
45. | Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer, 2013, 133(7): 1732-1742. |
46. | Sehm T, Rauh M, Wiendieck K, et al. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget, 2016, 7(46): 74630-74647. |
47. | Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature, 2019, 572(7769): 402-406. |
48. | Lin PL, Tang HH, Wu SY, et al. Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells. Antioxidants (Basel), 2020, 9(8): 682. doi: 10.3390/antiox9080682. |
49. | Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev, 2021, 50(10): 6013-6041. |
50. | Lippmann J, Petri K, Fulda S, et al. Redox modulation and induction of ferroptosis as a new therapeutic strategy in hepatocellular carcinoma. Transl Oncol, 2020, 13(8): 100785. doi: 10.1016/j.tranon.2020.100785. |
51. | Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755): 270-274. |
52. | Deng T, Hu B, Jin C, et al. A novel ferroptosis phenotype-related clinical-molecular prognostic signature for hepatocellular carcinoma. J Cell Mol Med, 2021, 25(14): 6618-6633. |
53. | Liu Z, Wang L, Liu L, et al. The identification and validation of two heterogenous subtypes and a risk signature based on ferroptosis in hepatocellular carcinoma. Front Oncol, 2021, 11: 619242. doi: 10.3389/fonc.2021.619242. |
54. | Liang JY, Wang DS, Lin HC, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma. Int J Biol Sci, 2020, 16(13): 2430-2441. |
55. | Du X, Zhang Y. Integrated analysis of immunity- and ferroptosis-related biomarker signatures to improve the prognosis prediction of hepatocellular carcinoma. Front Genet, 2020, 11: 614888. doi: 10.3389/fgene.2020.614888. |
- 1. Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ, 2015, 22(1): 58-73.
- 2. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072.
- 3. Hentze MW, Muckenthaler MU, Galy B, et al. Two to tango: regulation of mammalian iron metabolism. Cell, 2010, 142(1): 24-38.
- 4. Shen Z, Liu T, Li Y, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 2018, 12(11): 11355-11365.
- 5. 中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版). 中国实用外科杂志, 2020, 40(2): 121-138.
- 6. Dimri M, Satyanarayana A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers (Basel), 2020, 12(2): 491. doi: 10.3390/cancers12020491.
- 7. Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol, 2018, 15(12): 738-752.
- 8. Gong Y, Fan Z, Luo G, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer, 2019, 18(1): 100. doi: 10.1186/s12943-019-1029-8.
- 9. Allaire M, Rautou PE, Codogno P, et al. Autophagy in liver diseases: Time for translation? J Hepatol, 2019, 70(5): 985-998.
- 10. Miotto G, Rossetto M, Di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol, 2020, 28: 101328. doi: 10.1016/j.redox.2019.101328.
- 11. Louandre C, Marcq I, Bouhlal H, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett, 2015, 356(2PtB): 971-977.
- 12. Wang J, Shanmugam A, Markand S, et al. Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc-, the Na+-independent glutamate-cystine exchanger. Free Radic Biol Med, 2015, 86: 25-36.
- 13. Pal A, Fontanilla D, Gopalakrishnan A, et al. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol, 2012, 682(1-3): 12-20.
- 14. Bai T, Lei P, Zhou H, et al. Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med, 2019, 23(11): 7349-7359.
- 15. Patel SJ, Frey AG, Palenchar DJ, et al. A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol, 2019, 15(9): 872-881.
- 16. Protchenko O, Baratz E, Jadhav S, et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology, 2021, 73(3): 1176-1193.
- 17. Zhang J, Zhang X, Li J, et al. Systematic analysis of the ABC transporter family in hepatocellular carcinoma reveals the importance of ABCB6 in regulating ferroptosis. Life Sci, 2020, 257: 118131. doi: 10.1016/j.lfs.2020.118131.
- 18. Yuan H, Li X, Zhang X, et al. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun, 2016, 478(2): 838-844.
- 19. Wang L, Cai H, Hu Y, et al. A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis, 2018, 9(10): 1005. doi: 10.1038/s41419-018-1063-2.
- 20. Yang Y, Lin J, Guo S, et al. RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int, 2020, 20(1): 587. doi: 10.1186/s12935-020-01689-8.
- 21. Wang Q, Guo Y, Wang W, et al. RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp Cell Res, 2021, 399(1): 112453. doi: 10.1016/j.yexcr.2020.112453.
- 22. Dai C, Chen X, Li J, et al. Transcription factors in ferroptotic cell death. Cancer Gene Ther, 2020, 27(9): 645-656.
- 23. Bai T, Wang S, Zhao Y, et al. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun, 2017, 491(4): 919-925.
- 24. Ou W, Mulik RS, Anwar A, et al. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic Biol Med, 2017, 112: 597-607.
- 25. Tang H, Chen D, Li C, et al. Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells. Int J Pharm, 2019, 572: 118782. doi: 10.1016/j.ijpharm.2019.118782.
- 26. Qi W, Li Z, Xia L, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep, 2019, 9(1): 16185. doi: 10.1038/s41598-019-52837-8.
- 27. Orso F, Quirico L, Dettori D, et al. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol, 2020, 60: 214-224.
- 28. Bai T, Liang R, Zhu R, et al. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol, 2020, 235(7-8): 5637-5648.
- 29. Babu KR, Muckenthaler MU. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci Rep, 2019, 9(1): 1518. doi: 10.1038/s41598-018-35947-7.
- 30. Xu Q, Zhou L, Yang G, et al. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol Int, 2020, 44(11): 2344-2356.
- 31. Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545): 57-62.
- 32. Ou Y, Wang SJ, Li D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A, 2016, 113(44): E6806-E6812. doi: 10.1073/pnas.1607152113.
- 33. Xie Y, Zhu S, Song X, et al. The Tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep, 2017, 20(7): 1692-1704.
- 34. Leu JI, Murphy ME, George DL. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc Natl Acad Sci U S A, 2019, 116(17): 8390-8396.
- 35. Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1): 173-184.
- 36. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature, 2019, 575(7782): 299-309.
- 37. Oikawa T. Cancer Stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology, 2016, 64(2): 645-651.
- 38. Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther, 2020, 5(1): 8. doi: 10.1038/s41392-020-0110-5.
- 39. Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer, 2019, 19(7): 405-414.
- 40. Taylor WR, Fedorka SR, Gad I, et al. Small-molecule ferroptotic agents with potential to selectively target cancer stem cells. Sci Rep, 2019, 9(1): 5926. doi: 10.1038/s41598-019-42251-5.
- 41. Hata AN, Niederst MJ, Archibald HL, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med, 2016, 22(3): 262-269.
- 42. Jiang M, Qiao M, Zhao C, et al. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res, 2020, 9(4): 1569-1584.
- 43. Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679): 247-250.
- 44. Sun X, Niu X, Chen R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016, 64(2): 488-500.
- 45. Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer, 2013, 133(7): 1732-1742.
- 46. Sehm T, Rauh M, Wiendieck K, et al. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget, 2016, 7(46): 74630-74647.
- 47. Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature, 2019, 572(7769): 402-406.
- 48. Lin PL, Tang HH, Wu SY, et al. Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells. Antioxidants (Basel), 2020, 9(8): 682. doi: 10.3390/antiox9080682.
- 49. Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev, 2021, 50(10): 6013-6041.
- 50. Lippmann J, Petri K, Fulda S, et al. Redox modulation and induction of ferroptosis as a new therapeutic strategy in hepatocellular carcinoma. Transl Oncol, 2020, 13(8): 100785. doi: 10.1016/j.tranon.2020.100785.
- 51. Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755): 270-274.
- 52. Deng T, Hu B, Jin C, et al. A novel ferroptosis phenotype-related clinical-molecular prognostic signature for hepatocellular carcinoma. J Cell Mol Med, 2021, 25(14): 6618-6633.
- 53. Liu Z, Wang L, Liu L, et al. The identification and validation of two heterogenous subtypes and a risk signature based on ferroptosis in hepatocellular carcinoma. Front Oncol, 2021, 11: 619242. doi: 10.3389/fonc.2021.619242.
- 54. Liang JY, Wang DS, Lin HC, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma. Int J Biol Sci, 2020, 16(13): 2430-2441.
- 55. Du X, Zhang Y. Integrated analysis of immunity- and ferroptosis-related biomarker signatures to improve the prognosis prediction of hepatocellular carcinoma. Front Genet, 2020, 11: 614888. doi: 10.3389/fgene.2020.614888.