1. |
Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part Ⅲ: liver, biliary tract, and pancreas. Gastroenterology, 2009, 136(4): 1134-1144.
|
2. |
Song ST, Shi J, Wang XH, et al. Prevalence and risk factors for gallstone disease: a population-based cross-sectional study. J Dig Dis, 2020, 21(4): 237-245.
|
3. |
Minutolo V, Licciardello A, Arena M, et al. Laparoscopic cholecystectomy in the treatment of acute cholecystitis: comparison of outcomes and costs between early and delayed cholecystectomy. Eur Rev Med Pharmacol Sci, 2014, 18(2 Suppl): 40-46.
|
4. |
European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J Hepatol, 2016, 65(1): 146-181.
|
5. |
de JR De-Paula V, Forlenza AS, Forlenza OV. Relevance of gutmicrobiota in cognition, behaviour and Alzheimer’s disease. Pharmacol Res, 2018, 136: 29-34.
|
6. |
Illiano P, Brambilla R, Parolini C. The mutual interplay of gut microbiota, diet and human disease. FEBS J, 2020, 287(5): 833-855.
|
7. |
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1): 14. doi: 10.3390/microorganisms7010014.
|
8. |
Chiang JYL, Ferrell JM. Bile acid metabolism in liver pathobiology. Gene Expr, 2018, 18(2): 71-87.
|
9. |
Bull MJ, Plummer NT. Part 1: the human gut microbiome in health and disease. Integr Med (Encinitas), 2014, 13(6): 17-22.
|
10. |
Song Q, Wang Y, Huang L, et al. Review of the relationships among polysaccharides, gut microbiota, and human health. Food Res Int, 2021, 140: 109858. doi: 10.1016/j.foodres.2020.109858.
|
11. |
Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol, 2011, 9(4): 279-290.
|
12. |
Ding RX, Goh WR, Wu RN, et al. Revisit gut microbiota and its impact on human health and disease. J Food Drug Anal, 2019, 27(3): 623-631.
|
13. |
Wei B, Wang Y, Xiang S, et al. Alterations of gut microbiome in patients with type 2 diabetes mellitus who had undergone cholecystectomy. Am J Physiol Endocrinol Metab, 2021, 320(1): E113-E121. doi: 10.1152/ajpendo.00471.2020.
|
14. |
Li YD, Liu BN, Zhao SH, et al. Changes in gut microbiota composition and diversity associated with post-cholecystectomy diarrhea. World J Gastroenterol, 2021, 27(5): 391-403.
|
15. |
Frost F, Kacprowski T, Rühlemann M, et al. Carrying asymptomatic gallstones is not associated with changes in intestinal microbiota composition and diversity but cholecystectomy with significant dysbiosis. Sci Rep, 2021, 11(1): 6677. doi: 10.1038/s41598-021-86247-6.
|
16. |
Yoon WJ, Kim HN, Park E, et al. The impact of cholecystectomy on the gut microbiota: a case-control study. J Clin Med, 2019, 8(1): 79. doi: 10.3390/jcm8010079.
|
17. |
Keren N, Konikoff FM, Paitan Y, et al. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ Microbiol Rep, 2015, 7(6): 874-880.
|
18. |
Wang W, Wang J, Li J, et al. Cholecystectomy damages aging-associated intestinal microbiota construction. Front Microbiol, 2018, 9: 1402. doi: 10.3389/fmicb.2018.01402.
|
19. |
Grigor’eva I, Romanova T, Naumova N, et al. Gut microbiome in a Russian cohort of pre- and post-cholecystectomy female patients. J Pers Med, 2021, 11(4): 294. doi: 10.3390/jpm11040294.
|
20. |
Ren X, Xu J, Zhang Y, et al. Bacterial alterations in post-cholecystectomy patients are associated with colorectal cancer. Front Oncol, 2020, 10: 1418. doi: 10.3389/fonc.2020.01418.
|
21. |
周超, 石文华, 朱云, 等. 胆囊切除术后肠道菌群及血清IL-8水平变化研究. 世界复合医学, 2020, 6(9): 105-107.
|
22. |
杜国涛, 张兆波, 王青, 等. 对胆囊结石与患者肠道菌群的相关性研究. 当代医药论丛, 2020, 18(6): 21-22.
|
23. |
Chen X, Sun H, Jiang F, et al. Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ, 2020, 8: e8317. doi: 10.7717/peerj.8317.
|
24. |
Jackson MA, Jeffery IB, Beaumont M, et al. Signatures of early frailty in the gut microbiota. Genome Med, 2016, 8(1): 8. doi: 10.1186/s13073-016-0262-7.
|
25. |
Zhao X, Tang W, Wan H, et al. Altered gut microbiota as an auxiliary diagnostic indicator for patients with fracture-related infection. Front Microbiol, 2022, 13: 723791. doi: 10.3389/fmicb.2022.723791.
|
26. |
Brennan CA, Garrett WS. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat Rev Microbiol, 2019, 17(3): 156-166.
|
27. |
Gomi H, Solomkin JS, Takada T, et al. TG13 antimicrobial therapy for acute cholangitis and cholecystitis. J Hepatobiliary Pancreat Sci, 2013, 20(1): 60-70.
|
28. |
Natividad JM, Lamas B, Pham HP, et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat Commun, 2018, 9(1): 2802. doi: 10.1038/s41467-018-05249-7.
|
29. |
Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio, 2016, 7(4): e01018-16. doi: 10.1128/mBio.01018-16.
|
30. |
Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe, 2022, 30(3): 289-300.
|
31. |
Ma Y, Qu R, Zhang Y, et al. Progress in the study of colorectal cancer caused by altered gut microbiota after cholecystectomy. Front Endocrinol (Lausanne), 2022, 13: 815999. doi: 10.3389/fendo.2022.815999.
|
32. |
Sarashina-Kida H, Negishi H, Nishio J, et al. Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis. Proc Natl Acad Sci USA, 2017, 114(38): 10178-10183.
|
33. |
Cheng Y, Ling Z, Li L. The intestinal microbiota and colorectal cancer. Front Immunol, 2020, 11: 615056. doi: 10.3389/fimmu.2020.615056.
|
34. |
Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol, 2019, 16(11): 690-704.
|
35. |
Saus E, Iraola-Guzmán S, Willis JR, et al. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol Aspects Med, 2019, 69: 93-106.
|
36. |
Sánchez-Alcoholado L, Ramos-Molina B, Otero A, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers (Basel), 2020, 12(6): 1406. doi: 10.3390/cancers12061406.
|
37. |
Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe, 2014, 15(3): 317-328.
|
38. |
de Waal GM, de Villiers WJS, Forgan T, et al. Colorectal cancer is associated with increased circulating lipopolysaccharide, inflammation and hypercoagulability. Sci Rep, 2020, 10(1): 8777. doi: 10.1038/s41598-020-65324-2.
|
39. |
Ma Y, Hu M, Zhou L, et al. Dietary fiber intake and risks of proximal and distal colon cancers: a meta-analysis. Medicine (Baltimore), 2018, 97(36): e11678. doi: 10.1097/MD.0000000000011678.
|
40. |
Bernstein C, Holubec H, Bhattacharyya AK, et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol, 2011, 85(8): 863-871.
|
41. |
Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer?. Am J Physiol Gastrointest Liver Physiol, 2011, 301(3): G401-G424. doi: 10.1152/ajpgi.00110.2011.
|
42. |
Wang Q, Lu Q, Shao W, et al. Dysbiosis of gut microbiota after cholecystectomy is associated with non-alcoholic fatty liver disease in mice. FEBS Open Bio, 2021, 11(8): 2329-2339.
|
43. |
Nan Y, An J, Bao J, et al. The Chinese society of hepatology position statement on the redefinition of fatty liver disease. J Hepatol, 2021, 75(2): 454-461.
|
44. |
Xie ZQ, Li HX, Tan WL, et al. Association of cholecystectomy with liver fibrosis and cirrhosis among adults in the USA: a population-based propensity score-matched study. Front Med (Lausanne), 2021, 8: 787777. doi: 10.3389/fmed.2021.787777.
|
45. |
Tokuhara D. Role of the gut microbiota in regulating non-alcoholic fatty liver disease in children and adolescents. Front Nutr, 2021, 8: 700058. doi: 10.3389/fnut.2021.700058.
|
46. |
Alferink LJM, Radjabzadeh D, Erler NS, et al. Microbiomics, metabolomics, predicted metagenomics, and hepatic steatosis in a population-based study of 1 355 adults. Hepatology, 2021, 73(3): 968-982.
|
47. |
Saltzman ET, Palacios T, Thomsen M, et al. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front Microbiol, 2018, 9: 61. doi: 10.3389/fmicb.2018.00061.
|
48. |
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol, 2020, 72(3): 558-577.
|
49. |
Pan X, Wen SW, Kaminga AC, et al. Gut metabolites and inflammation factors in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Sci Rep, 2020, 10(1): 8848. doi: 10.1038/s41598-020-65051-8.
|
50. |
Liu W, Luo X, Tang J, et al. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier. Eur J Nutr, 2021, 60(5): 2317-2330.
|
51. |
胡义亭, 许玉芳, 赵娜, 等. 胆囊切除术后综合征的研究现状. 临床消化病杂志, 2021, 33(2): 144-147.
|
52. |
Jaunoo SS, Mohandas S, Almond LM. Postcholecystectomy syndrome (PCS). Int J Surg, 2010, 8(1): 15-17.
|
53. |
冯其贞, 武菲, 李建军. 胆囊切除术后综合征现状调查及危险因素分析. 天津医药, 2017, 45(8): 865-868.
|
54. |
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040.
|
55. |
Kang Z, Lu M, Jiang M, et al. Proteobacteria acts as a pathogenic risk-factor for chronic abdominal pain and diarrhea in post-cholecystectomy syndrome patients: a gut microbiome metabolomics study. Med Sci Monit, 2019, 25: 7312-7320.
|
56. |
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol, 2021, 19(1): 55-71.
|
57. |
Farrugia A, Attard JA, Hanmer S, et al. Rates of bile acid diarrhoea after cholecystectomy: a multicentre audit. World J Surg, 2021, 45(8): 2447-2453.
|
58. |
Xu Y, Jing H, Wang J, et al. Disordered gut microbiota correlates with altered fecal bile acid metabolism and post-cholecystectomy diarrhea. Front Microbiol, 2022, 13: 800604. doi: 10.3389/fmicb.2022.800604.
|