- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China;
Biliary tract cancer is characterized by occult onset, highly malignancy and poor prognosis. Traditional medical imaging is an important tool for surgical strategies and prognostic assessment, but it can no longer meet the urgent need for accurate and individualized treatment in patients with biliary tract cancer. With the advent of the digital imaging era, the advancement of artificial intelligence technology has given a new vitality to digital imaging, and provided more possibilities for the development of medical imaging in clinical applications. The application of radiomics in the diagnosis and differential diagnosis of benign and malignant tumors of biliary tract, assessment of lymph node status, early recurrence and prognosis assessment provides new means for the diagnosis and treatment of patients with biliary tract cancer.
Citation: LI Qi, JIN Zhechuan, LI Mengke, GENG Zhimin. Application status and prospects of radiomics in diagnosis and treatment of biliary tract cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2022, 29(12): 1546-1553. doi: 10.7507/1007-9424.202209099 Copy
1. | Vithayathil M, Khan SA. Current epidemiology of cholangiocarcinoma in Western countries. J Hepatol, 2022, S0168-8278(22)02988-9. doi: 10.1016/j.jhep.2022.07.022. Online ahead of print. |
2. | Squadroni M, Tondulli L, Gatta G, et al. Cholangiocarcinoma. Crit Rev Oncol Hematol, 2017, 116: 11-31. |
3. | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. |
4. | Fiz F, Jayakody Arachchige VS, Gionso M, et al. Radiomics of Biliary Tumors: A Systematic Review of Current Evidence. Diagnostics (Basel), 2022, 12(4): 826. doi: 10.3390/diagnostics12040826. |
5. | Granata V, Fusco R, Belli A, et al. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer, 2022, 17(1): 13. doi: 10.1186/s13027-022-00429-z. |
6. | Rimini M, Puzzoni M, Pedica F, et al. Cholangiocarcinoma: new perspectives for new horizons. Expert Rev Gastroenterol Hepatol, 2021, 15(12): 1367-1383. |
7. | Potretzke TA, Tan BR, Doyle MB, et al. Imaging features of biphenotypic primary liver carcinoma (hepatocholangiocarcinoma) and the potential to mimic hepatocellular carcinoma: LI-RADS analysis of CT and MRI features in 61 cases. AJR Am J Roentgenol, 2016, 207(1): 25-31. |
8. | Peng YT, Zhou CY, Lin P, et al. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics of intrahepatic cholangiocarcinoma. Acad Radiol, 2020, 27(6): 785-797. |
9. | Ren S, Li Q, Liu S, et al. Clinical value of machine learning-based ultrasomics in preoperative differentiation between hepatocellular carcinoma and intrahepatic cholangiocarcinoma: A multicenter study. Front Oncol, 2021, 11: 749137. doi: 10.3389/fonc.2021.749137. |
10. | Chen Y, Lu Q, Zhang W, et al. Preoperative differentiation of combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma: a nomogram based on ultrasonographic features and clinical indicators. Front Oncol, 2022, 12: 757774. doi: 10.3389/fonc.2022.757774. |
11. | Zhang J, Huang Z, Cao L, et al. Differentiation combined hepatocellular and cholangiocarcinoma from intrahepatic cholangiocarcinoma based on radiomics machine learning. Ann Transl Med, 2020, 8(4): 119. doi:10.21037/atm.2020.01.126. |
12. | Xu X, Mao Y, Tang Y, et al. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on radiomic analysis. Comput Math Methods Med, 2022, 2022: 5334095. doi:10.1155/2022/5334095. |
13. | 张加辉, 陈峰, 薛星, 等. 基于支持向量机的MRI影像组学方法鉴别不同病理分型原发性肝癌的价值. 中华放射学杂志, 2018, 52(5): 333-337. |
14. | Wang X, Wang S, Yin X, et al. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma. Comput Biol Med, 2022, 141: 105058. doi:10.1016/j.compbiomed.2021.105058. |
15. | Zhou Y, Zhou G, Zhang J, et al. DCE-MRI based radiomics nomogram for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma. Eur Radiol, 2022, 32(7): 5004-5015. |
16. | 周子东, 查悦明, 黄文山, 等. 18F-FDGPET-CT影像组学鉴别中低分化肝细胞癌和肝内胆管细胞癌. 中华肝脏外科手术学电子杂志, 2019, 8(2): 154-158. |
17. | Peng JB, Peng YT, Lin P, et al. Differentiating infected focal liver lesions from malignant mimickers: value of ultrasound-based radiomics. Clin Radiol, 2022, 77(2): 104-113. |
18. | Xue B, Wu S, Zhang M, et al. A radiomic-based model of different contrast-enhanced CT phase for differentiate intrahepatic cholangiocarcinoma from inflammatory mass with hepatolithiasis. Abdom Radiol (NY), 2021, 46(8): 3835-3844. |
19. | Xue B, Wu S, Zheng M, et al. Development and validation of a radiomic-based model for prediction of intrahepatic cholangiocarcinoma in patients with intrahepatic lithiasis complicated by imagologically diagnosed mass. Front Oncol, 2021, 10: 598253. doi:10.3389/fonc.2020.598253. |
20. | Foley KG, Lahaye MJ, Thoeni RF, et al. Management and follow-up of gallbladder polyps: updated joint guidelines between the ESGAR, EAES, EFISDS and ESGE. Eur Radiol, 2022, 32(5): 3358-3368. |
21. | Yuan HX, Yu QH, Zhang YQ, et al. Ultrasound radiomics effective for preoperative identification of true and pseudo gallbladder polyps based on spatial and morphological features. Front Oncol, 2020, 10: 1719. doi:10.3389/fonc.2020.01719. |
22. | Zhang X, Wang J, Wu B, et al. A nomogram-based model and ultrasonic radiomic features for gallbladder polyp classification. J Gastroenterol Hepatol, 2022, 37(7): 1380-1388. |
23. | Han S, Liu Y, Li X, et al. Development and validation of a preoperative nomogram for predicting benign and malignant gallbladder polypoid lesions. Front Oncol, 2022, 12: 800449. doi:10.3389/fonc.2022.800449. |
24. | 杨晓东, 刘屹, 郭妍, 等. CT影像组学鉴别最大径≥1cm良恶性胆囊息肉. 中国医学影像技术, 2019, 35(12): 1842-1846. |
25. | Zhang X, Wang J, Wu B, et al. A nomogram-based model to predict neoplastic risk for patients with gallbladder polyps. J Clin Transl Hepatol, 2022, 10(2): 263-272. |
26. | Rizvi S, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma-evolving concepts and therapeutic strategies. Nat Rev Clin Oncol, 2018, 15(2): 95-111. |
27. | Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet, 2014, 383(9935): 2168-2179. |
28. | Florio AA, Ferlay J, Znaor A, et al. Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012. Cancer, 2020, 126(11): 2666-2678. |
29. | Ji GW, Zhang YD, Zhang H, et al. Biliary tract cancer at CT: A radiomics-based model to predict lymph node metastasis and survival outcomes. Radiology, 2019, 290(1): 90-98. |
30. | Ji GW, Zhu FP, Zhang YD, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur Radiol, 2019, 29(7): 3725-3735. |
31. | Zhang S, Huang S, He W, et al. Radiomics-based preoperative prediction of lymph node metastasis in intrahepatic cholangiocarcinoma using contrast-enhanced computed tomography. Ann Surg Oncol, 2022, 29(11): 6786-6799. |
32. | Xu L, Yang P, Liang W, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics, 2019, 9(18): 5374-5385. |
33. | Meng ZW, Lin XQ, Zhu JH, et al. A nomogram to predict lymph node metastasis before resection in intrahepatic cholangiocarcinoma. J Surg Res, 2018, 226: 56-63. |
34. | Yang C, Huang M, Li S, et al. Radiomics model of magnetic resonance imaging for predicting pathological grading and lymph node metastases of extrahepatic cholangiocarcinoma. Cancer Lett, 2020, 470: 1-7. |
35. | Tang Y, Yang CM, Su S, et al. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. BMC Cancer, 2021, 21(1): 1268. doi:10.1186/s12885-021-08947-6. |
36. | Yao X, Huang X, Yang C, et al. A novel approach to assessing differentiation degree and lymph node metastasis of extrahepatic cholangiocarcinoma: prediction using a radiomics-based particle swarm optimization and support vector machine model. JMIR Med Inform, 2020, 8(10): e23578. doi:10.2196/23578. |
37. | Liu X, Liang X, Ruan L, et al. A clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in gallbladder cancer. Front Oncol, 2021, 11: 633852. doi:10.3389/fonc.2021.633852. |
38. | 李起, 金哲川, 张东, 等. 基于双期增强CT检查影像组学胆囊癌淋巴结转移预测模型构建及其应用价值. 中华消化外科杂志, 2022, 21(7): 931-940. |
39. | Shao C, Chen J, Chen J, et al. Histological classification of microvascular invasion to predict prognosis in intrahepatic cholangiocarcinoma. Int J Clin Exp Pathol, 2017, 10(7): 7674-7681. |
40. | Hirokawa F, Hayashi M, Miyamoto Y, et al. Outcomes and predictors of microvascular invasion of solitary hepatocellular carcinoma. Hepatol Res, 2014, 44(8): 846-853. |
41. | Xiang F, Wei S, Liu X, et al. Radiomics analysis of contrast-enhanced CT for the preoperative prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma. Front Oncol, 2021, 11: 774117. doi:10.3389/fonc.2021.774117. |
42. | Qian X, Lu X, Ma X, et al. A multi-parametric radiomics nomogram for preoperative prediction of microvascular invasion status in intrahepatic cholangiocarcinoma. Front Oncol, 2022, 12: 838701. doi:10.3389/fonc.2022.838701. |
43. | Zhou Y, Zhou G, Zhang J, et al. Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma. Eur Radiol, 2021, 31(9): 6846-6855. |
44. | Jiang C, Zhao L, Xin B, et al. 18F-FDG PET/CT radiomic analysis for classifying and predicting microvascular invasion in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Quant Imaging Med Surg, 2022, 12(8): 4135-4150. |
45. | Wei T, Zhang XF, He J, et al. Prognostic impact of perineural invasion in intrahepatic cholangiocarcinoma: multicentre study. Br J Surg, 2022, 109(7): 610-616. |
46. | Zhan PC, Lyu PJ, Li Z, et al. CT-based radiomics analysis for noninvasive prediction of perineural invasion of perihilar cholangiocarcinoma. Front Oncol, 2022, 12: 900478. doi:10.3389/fonc.2022.900478. |
47. | Huang X, Shu J, Yan Y, et al. Feasibility of magnetic resonance imaging-based radiomics features for preoperative prediction of extrahepatic cholangiocarcinoma stage. Eur J Cancer, 2021, 155: 227-235. |
48. | King MJ, Hectors S, Lee KM, et al. Outcomes assessment in intrahepatic cholangiocarcinoma using qualitative and quantitative imaging features. Cancer Imaging, 2020, 20(1): 43. doi:10.1186/s40644-020-00323-0. |
49. | Tang Y, Zhang T, Zhou X, et al. The preoperative prognostic value of the radiomics nomogram based on CT combined with machine learning in patients with intrahepatic cholangiocarcinoma. World J Surg Oncol, 2021, 19(1): 45. doi:10.1186/s12957-021-02162-0. |
50. | Wan Y, Yang P, Xu L, et al. Radiomics analysis combining unsupervised learning and handcrafted features: A multiple-disease study. Med Phys, 2021, 48(11): 7003-7015. |
51. | Aherne EA, Pak LM, Goldman DA, et al. Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics? Abdom Radiol (NY), 2018, 43(10): 2665-2672. |
52. | Liang W, Xu L, Yang P, et al. Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma. Front Oncol, 2018, 8: 360. doi:10.3389/fonc.2018.00360. |
53. | Zhao L, Ma X, Liang M, et al. Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers. Cancer Imaging, 2019, 19(1): 49. doi:10.1186/s40644-019-0234-4. |
54. | Hao X, Liu B, Hu X, et al. A radiomics-based approach for predicting early recurrence in intrahepatic cholangiocarcinoma after surgical resection: A multicenter study. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3659-3662. |
55. | Zhu Y, Mao Y, Chen J, et al. Radiomics-based model for predicting early recurrence of intrahepatic mass-forming cholangiocarcinoma after curative tumor resection. Sci Rep, 2021, 11(1): 18347. doi:10.1038/s41598-021-97796-1. |
56. | Jolissaint JS, Wang T, Soares KC, et al. Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. HPB (Oxford), 2022, 24(8): 1341-1350. |
57. | Xu L, Wan Y, Luo C, et al. Integrating intratumoral and peritumoral features to predict tumor recurrence in intrahepatic cholangiocarcinoma. Phys Med Biol, 2021, 66(12). doi:10.1088/1361-6560/ac01f3. |
58. | Fiz F, Masci C, Costa G, et al. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3387-3400. |
59. | Yang Y, Zou X, Zhou W, et al. Multiparametric MRI-based radiomic signature for preoperative evaluation of overall survival in intrahepatic cholangiocarcinoma after partial hepatectomy. J Magn Reson Imaging, 2022, 56(3): 739-751. |
60. | Yang Y, Zou X, Zhou W, et al. DWI-based radiomic signature: potential role for individualized adjuvant chemotherapy in intrahepatic cholangiocarcinoma after partial hepatectomy. Insights Imaging, 2022, 13(1): 37. doi:10.1186/s13244-022-01179-7. |
61. | Park HJ, Park B, Park SY, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features. Eur Radiol, 2021, 31(11): 8638-8648. |
62. | Silva M, Maddalo M, Leoni E, et al. Integrated prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed tomography: the adjunct yield of radiomics. Abdom Radiol (NY), 2021, 46(10): 4689-4700. |
63. | Li MD, Lu XZ, Liu JF, et al. Preoperative survival prediction in intrahepatic cholangiocarcinoma using an ultrasound-based radiographic-radiomics signature. J Ultrasound Med, 2022, 41(6): 1483-1495. |
64. | Chu H, Liu Z, Liang W, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma. Eur Radiol, 2021, 31(4): 2368-2376. |
65. | Tang YY, Zhao YN, Zhang T, et al. Comprehensive radiomics nomogram for predicting survival of patients with combined hepatocellular carcinoma and cholangiocarcinoma. World J Gastroenterol, 2021, 27(41): 7173-7189. |
66. | Qin H, Hu X, Zhang J, et al. Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative resection. Liver Int, 2021, 41(4): 837-850. |
67. | Zhao J, Zhang W, Fan CL, et al. Development and validation of preoperative magnetic resonance imaging-based survival predictive nomograms for patients with perihilar cholangiocarcinoma after radical resection: A pilot study. Eur J Radiol, 2021, 138: 109631. doi:10.1016/j.ejrad.2021.109631. |
68. | Zhao J, Zhang W, Zhu YY, et al. Development and validation of noninvasive MRI-based signature for preoperative prediction of early recurrence in perihilar cholangiocarcinoma. J Magn Reson Imaging, 2022, 55(3): 787-802. |
69. | Liu Z, Zhu G, Jiang X, et al. Survival prediction in gallbladder cancer using CT based machine learning. Front Oncol, 2020, 10: 604288. doi:10.3389/fonc.2020.604288. |
70. | Gupta P, Rana P, Ganeshan B, et al. Computed tomography texture-based radiomics analysis in gallbladder cancer: initial experience. Clin Exp Hepatol, 2021, 7(4): 406-414. |
71. | Xiang F, Liang X, Yang L, et al. Contrast-enhanced CT radiomics for prediction of recurrence-free survival in gallbladder carcinoma after surgical resection. Eur Radiol, 2022, 32(10): 7087-7097. |
72. | Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 2018, 19(9): 1180-1191. |
73. | Zhang J, Wu Z, Zhang X, et al. Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers. ESMO Open, 2020, 5(6): e000910. doi:10.1136/esmoopen-2020-000910. |
74. | Mosconi C, Cucchetti A, Bruno A, et al. Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best respond to radioembolisation. Eur Radiol, 2020, 30(8): 4534-4544. |
75. | Xu L, Yang P, Yen EA, et al. A multi-organ cancer study of the classification performance using 2D and 3D image features in radiomics analysis. Phys Med Biol, 2019, 64(21): 215009. doi:10.1088/1361-6560/ab489f. |
76. | LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444. |
77. | 尹梓名, 孙大运, 翁昊, 等. 基于深度神经网络MaskR-CNN胆囊癌辅助识别系统临床应用价值研究. 中国实用外科杂志, 2021, 41(3): 310-314. |
78. | 金哲川, 李起, 张东, 等. 基于nnU-Net的临床影像组学模型对胆囊癌预后的预测价值. 中华消化外科杂志, 2022, 21(5): 656-664. |
79. | Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data. J Hematol Oncol, 2021, 14(1): 154. doi:10.1186/s13045-021-01167-2. |
80. | Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part Ⅱ: convolutional neural network interpretation using radiologic imaging features. Eur Radiol, 2019, 29(7): 3348-3357. |
81. | Wang Y, Shao J, Wang P, et al. Deep learning radiomics to predict regional lymph node staging for hilar cholangiocarcinoma. Front Oncol, 2021, 11: 721460. doi:10.3389/fonc.2021.721460. |
82. | Shen Z, Shang X, Zhao M, et al. A learning-based framework for error compensation in 3D printing. IEEE Trans Cybern, 2019, 49(11): 4042-4050. |
83. | Ghaednia H, Fourman MS, Lans A, et al. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J, 2021, 21(10): 1617-1625. |
84. | 石镇维, 刘再毅. 影像组学研究的困境和出路. 中华放射学杂志, 2022, 56(1): 9-11. |
- 1. Vithayathil M, Khan SA. Current epidemiology of cholangiocarcinoma in Western countries. J Hepatol, 2022, S0168-8278(22)02988-9. doi: 10.1016/j.jhep.2022.07.022. Online ahead of print.
- 2. Squadroni M, Tondulli L, Gatta G, et al. Cholangiocarcinoma. Crit Rev Oncol Hematol, 2017, 116: 11-31.
- 3. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
- 4. Fiz F, Jayakody Arachchige VS, Gionso M, et al. Radiomics of Biliary Tumors: A Systematic Review of Current Evidence. Diagnostics (Basel), 2022, 12(4): 826. doi: 10.3390/diagnostics12040826.
- 5. Granata V, Fusco R, Belli A, et al. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer, 2022, 17(1): 13. doi: 10.1186/s13027-022-00429-z.
- 6. Rimini M, Puzzoni M, Pedica F, et al. Cholangiocarcinoma: new perspectives for new horizons. Expert Rev Gastroenterol Hepatol, 2021, 15(12): 1367-1383.
- 7. Potretzke TA, Tan BR, Doyle MB, et al. Imaging features of biphenotypic primary liver carcinoma (hepatocholangiocarcinoma) and the potential to mimic hepatocellular carcinoma: LI-RADS analysis of CT and MRI features in 61 cases. AJR Am J Roentgenol, 2016, 207(1): 25-31.
- 8. Peng YT, Zhou CY, Lin P, et al. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics of intrahepatic cholangiocarcinoma. Acad Radiol, 2020, 27(6): 785-797.
- 9. Ren S, Li Q, Liu S, et al. Clinical value of machine learning-based ultrasomics in preoperative differentiation between hepatocellular carcinoma and intrahepatic cholangiocarcinoma: A multicenter study. Front Oncol, 2021, 11: 749137. doi: 10.3389/fonc.2021.749137.
- 10. Chen Y, Lu Q, Zhang W, et al. Preoperative differentiation of combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma: a nomogram based on ultrasonographic features and clinical indicators. Front Oncol, 2022, 12: 757774. doi: 10.3389/fonc.2022.757774.
- 11. Zhang J, Huang Z, Cao L, et al. Differentiation combined hepatocellular and cholangiocarcinoma from intrahepatic cholangiocarcinoma based on radiomics machine learning. Ann Transl Med, 2020, 8(4): 119. doi:10.21037/atm.2020.01.126.
- 12. Xu X, Mao Y, Tang Y, et al. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on radiomic analysis. Comput Math Methods Med, 2022, 2022: 5334095. doi:10.1155/2022/5334095.
- 13. 张加辉, 陈峰, 薛星, 等. 基于支持向量机的MRI影像组学方法鉴别不同病理分型原发性肝癌的价值. 中华放射学杂志, 2018, 52(5): 333-337.
- 14. Wang X, Wang S, Yin X, et al. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma. Comput Biol Med, 2022, 141: 105058. doi:10.1016/j.compbiomed.2021.105058.
- 15. Zhou Y, Zhou G, Zhang J, et al. DCE-MRI based radiomics nomogram for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma. Eur Radiol, 2022, 32(7): 5004-5015.
- 16. 周子东, 查悦明, 黄文山, 等. 18F-FDGPET-CT影像组学鉴别中低分化肝细胞癌和肝内胆管细胞癌. 中华肝脏外科手术学电子杂志, 2019, 8(2): 154-158.
- 17. Peng JB, Peng YT, Lin P, et al. Differentiating infected focal liver lesions from malignant mimickers: value of ultrasound-based radiomics. Clin Radiol, 2022, 77(2): 104-113.
- 18. Xue B, Wu S, Zhang M, et al. A radiomic-based model of different contrast-enhanced CT phase for differentiate intrahepatic cholangiocarcinoma from inflammatory mass with hepatolithiasis. Abdom Radiol (NY), 2021, 46(8): 3835-3844.
- 19. Xue B, Wu S, Zheng M, et al. Development and validation of a radiomic-based model for prediction of intrahepatic cholangiocarcinoma in patients with intrahepatic lithiasis complicated by imagologically diagnosed mass. Front Oncol, 2021, 10: 598253. doi:10.3389/fonc.2020.598253.
- 20. Foley KG, Lahaye MJ, Thoeni RF, et al. Management and follow-up of gallbladder polyps: updated joint guidelines between the ESGAR, EAES, EFISDS and ESGE. Eur Radiol, 2022, 32(5): 3358-3368.
- 21. Yuan HX, Yu QH, Zhang YQ, et al. Ultrasound radiomics effective for preoperative identification of true and pseudo gallbladder polyps based on spatial and morphological features. Front Oncol, 2020, 10: 1719. doi:10.3389/fonc.2020.01719.
- 22. Zhang X, Wang J, Wu B, et al. A nomogram-based model and ultrasonic radiomic features for gallbladder polyp classification. J Gastroenterol Hepatol, 2022, 37(7): 1380-1388.
- 23. Han S, Liu Y, Li X, et al. Development and validation of a preoperative nomogram for predicting benign and malignant gallbladder polypoid lesions. Front Oncol, 2022, 12: 800449. doi:10.3389/fonc.2022.800449.
- 24. 杨晓东, 刘屹, 郭妍, 等. CT影像组学鉴别最大径≥1cm良恶性胆囊息肉. 中国医学影像技术, 2019, 35(12): 1842-1846.
- 25. Zhang X, Wang J, Wu B, et al. A nomogram-based model to predict neoplastic risk for patients with gallbladder polyps. J Clin Transl Hepatol, 2022, 10(2): 263-272.
- 26. Rizvi S, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma-evolving concepts and therapeutic strategies. Nat Rev Clin Oncol, 2018, 15(2): 95-111.
- 27. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet, 2014, 383(9935): 2168-2179.
- 28. Florio AA, Ferlay J, Znaor A, et al. Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012. Cancer, 2020, 126(11): 2666-2678.
- 29. Ji GW, Zhang YD, Zhang H, et al. Biliary tract cancer at CT: A radiomics-based model to predict lymph node metastasis and survival outcomes. Radiology, 2019, 290(1): 90-98.
- 30. Ji GW, Zhu FP, Zhang YD, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur Radiol, 2019, 29(7): 3725-3735.
- 31. Zhang S, Huang S, He W, et al. Radiomics-based preoperative prediction of lymph node metastasis in intrahepatic cholangiocarcinoma using contrast-enhanced computed tomography. Ann Surg Oncol, 2022, 29(11): 6786-6799.
- 32. Xu L, Yang P, Liang W, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics, 2019, 9(18): 5374-5385.
- 33. Meng ZW, Lin XQ, Zhu JH, et al. A nomogram to predict lymph node metastasis before resection in intrahepatic cholangiocarcinoma. J Surg Res, 2018, 226: 56-63.
- 34. Yang C, Huang M, Li S, et al. Radiomics model of magnetic resonance imaging for predicting pathological grading and lymph node metastases of extrahepatic cholangiocarcinoma. Cancer Lett, 2020, 470: 1-7.
- 35. Tang Y, Yang CM, Su S, et al. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. BMC Cancer, 2021, 21(1): 1268. doi:10.1186/s12885-021-08947-6.
- 36. Yao X, Huang X, Yang C, et al. A novel approach to assessing differentiation degree and lymph node metastasis of extrahepatic cholangiocarcinoma: prediction using a radiomics-based particle swarm optimization and support vector machine model. JMIR Med Inform, 2020, 8(10): e23578. doi:10.2196/23578.
- 37. Liu X, Liang X, Ruan L, et al. A clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in gallbladder cancer. Front Oncol, 2021, 11: 633852. doi:10.3389/fonc.2021.633852.
- 38. 李起, 金哲川, 张东, 等. 基于双期增强CT检查影像组学胆囊癌淋巴结转移预测模型构建及其应用价值. 中华消化外科杂志, 2022, 21(7): 931-940.
- 39. Shao C, Chen J, Chen J, et al. Histological classification of microvascular invasion to predict prognosis in intrahepatic cholangiocarcinoma. Int J Clin Exp Pathol, 2017, 10(7): 7674-7681.
- 40. Hirokawa F, Hayashi M, Miyamoto Y, et al. Outcomes and predictors of microvascular invasion of solitary hepatocellular carcinoma. Hepatol Res, 2014, 44(8): 846-853.
- 41. Xiang F, Wei S, Liu X, et al. Radiomics analysis of contrast-enhanced CT for the preoperative prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma. Front Oncol, 2021, 11: 774117. doi:10.3389/fonc.2021.774117.
- 42. Qian X, Lu X, Ma X, et al. A multi-parametric radiomics nomogram for preoperative prediction of microvascular invasion status in intrahepatic cholangiocarcinoma. Front Oncol, 2022, 12: 838701. doi:10.3389/fonc.2022.838701.
- 43. Zhou Y, Zhou G, Zhang J, et al. Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma. Eur Radiol, 2021, 31(9): 6846-6855.
- 44. Jiang C, Zhao L, Xin B, et al. 18F-FDG PET/CT radiomic analysis for classifying and predicting microvascular invasion in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Quant Imaging Med Surg, 2022, 12(8): 4135-4150.
- 45. Wei T, Zhang XF, He J, et al. Prognostic impact of perineural invasion in intrahepatic cholangiocarcinoma: multicentre study. Br J Surg, 2022, 109(7): 610-616.
- 46. Zhan PC, Lyu PJ, Li Z, et al. CT-based radiomics analysis for noninvasive prediction of perineural invasion of perihilar cholangiocarcinoma. Front Oncol, 2022, 12: 900478. doi:10.3389/fonc.2022.900478.
- 47. Huang X, Shu J, Yan Y, et al. Feasibility of magnetic resonance imaging-based radiomics features for preoperative prediction of extrahepatic cholangiocarcinoma stage. Eur J Cancer, 2021, 155: 227-235.
- 48. King MJ, Hectors S, Lee KM, et al. Outcomes assessment in intrahepatic cholangiocarcinoma using qualitative and quantitative imaging features. Cancer Imaging, 2020, 20(1): 43. doi:10.1186/s40644-020-00323-0.
- 49. Tang Y, Zhang T, Zhou X, et al. The preoperative prognostic value of the radiomics nomogram based on CT combined with machine learning in patients with intrahepatic cholangiocarcinoma. World J Surg Oncol, 2021, 19(1): 45. doi:10.1186/s12957-021-02162-0.
- 50. Wan Y, Yang P, Xu L, et al. Radiomics analysis combining unsupervised learning and handcrafted features: A multiple-disease study. Med Phys, 2021, 48(11): 7003-7015.
- 51. Aherne EA, Pak LM, Goldman DA, et al. Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics? Abdom Radiol (NY), 2018, 43(10): 2665-2672.
- 52. Liang W, Xu L, Yang P, et al. Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma. Front Oncol, 2018, 8: 360. doi:10.3389/fonc.2018.00360.
- 53. Zhao L, Ma X, Liang M, et al. Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers. Cancer Imaging, 2019, 19(1): 49. doi:10.1186/s40644-019-0234-4.
- 54. Hao X, Liu B, Hu X, et al. A radiomics-based approach for predicting early recurrence in intrahepatic cholangiocarcinoma after surgical resection: A multicenter study. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3659-3662.
- 55. Zhu Y, Mao Y, Chen J, et al. Radiomics-based model for predicting early recurrence of intrahepatic mass-forming cholangiocarcinoma after curative tumor resection. Sci Rep, 2021, 11(1): 18347. doi:10.1038/s41598-021-97796-1.
- 56. Jolissaint JS, Wang T, Soares KC, et al. Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. HPB (Oxford), 2022, 24(8): 1341-1350.
- 57. Xu L, Wan Y, Luo C, et al. Integrating intratumoral and peritumoral features to predict tumor recurrence in intrahepatic cholangiocarcinoma. Phys Med Biol, 2021, 66(12). doi:10.1088/1361-6560/ac01f3.
- 58. Fiz F, Masci C, Costa G, et al. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3387-3400.
- 59. Yang Y, Zou X, Zhou W, et al. Multiparametric MRI-based radiomic signature for preoperative evaluation of overall survival in intrahepatic cholangiocarcinoma after partial hepatectomy. J Magn Reson Imaging, 2022, 56(3): 739-751.
- 60. Yang Y, Zou X, Zhou W, et al. DWI-based radiomic signature: potential role for individualized adjuvant chemotherapy in intrahepatic cholangiocarcinoma after partial hepatectomy. Insights Imaging, 2022, 13(1): 37. doi:10.1186/s13244-022-01179-7.
- 61. Park HJ, Park B, Park SY, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features. Eur Radiol, 2021, 31(11): 8638-8648.
- 62. Silva M, Maddalo M, Leoni E, et al. Integrated prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed tomography: the adjunct yield of radiomics. Abdom Radiol (NY), 2021, 46(10): 4689-4700.
- 63. Li MD, Lu XZ, Liu JF, et al. Preoperative survival prediction in intrahepatic cholangiocarcinoma using an ultrasound-based radiographic-radiomics signature. J Ultrasound Med, 2022, 41(6): 1483-1495.
- 64. Chu H, Liu Z, Liang W, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma. Eur Radiol, 2021, 31(4): 2368-2376.
- 65. Tang YY, Zhao YN, Zhang T, et al. Comprehensive radiomics nomogram for predicting survival of patients with combined hepatocellular carcinoma and cholangiocarcinoma. World J Gastroenterol, 2021, 27(41): 7173-7189.
- 66. Qin H, Hu X, Zhang J, et al. Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative resection. Liver Int, 2021, 41(4): 837-850.
- 67. Zhao J, Zhang W, Fan CL, et al. Development and validation of preoperative magnetic resonance imaging-based survival predictive nomograms for patients with perihilar cholangiocarcinoma after radical resection: A pilot study. Eur J Radiol, 2021, 138: 109631. doi:10.1016/j.ejrad.2021.109631.
- 68. Zhao J, Zhang W, Zhu YY, et al. Development and validation of noninvasive MRI-based signature for preoperative prediction of early recurrence in perihilar cholangiocarcinoma. J Magn Reson Imaging, 2022, 55(3): 787-802.
- 69. Liu Z, Zhu G, Jiang X, et al. Survival prediction in gallbladder cancer using CT based machine learning. Front Oncol, 2020, 10: 604288. doi:10.3389/fonc.2020.604288.
- 70. Gupta P, Rana P, Ganeshan B, et al. Computed tomography texture-based radiomics analysis in gallbladder cancer: initial experience. Clin Exp Hepatol, 2021, 7(4): 406-414.
- 71. Xiang F, Liang X, Yang L, et al. Contrast-enhanced CT radiomics for prediction of recurrence-free survival in gallbladder carcinoma after surgical resection. Eur Radiol, 2022, 32(10): 7087-7097.
- 72. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 2018, 19(9): 1180-1191.
- 73. Zhang J, Wu Z, Zhang X, et al. Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers. ESMO Open, 2020, 5(6): e000910. doi:10.1136/esmoopen-2020-000910.
- 74. Mosconi C, Cucchetti A, Bruno A, et al. Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best respond to radioembolisation. Eur Radiol, 2020, 30(8): 4534-4544.
- 75. Xu L, Yang P, Yen EA, et al. A multi-organ cancer study of the classification performance using 2D and 3D image features in radiomics analysis. Phys Med Biol, 2019, 64(21): 215009. doi:10.1088/1361-6560/ab489f.
- 76. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
- 77. 尹梓名, 孙大运, 翁昊, 等. 基于深度神经网络MaskR-CNN胆囊癌辅助识别系统临床应用价值研究. 中国实用外科杂志, 2021, 41(3): 310-314.
- 78. 金哲川, 李起, 张东, 等. 基于nnU-Net的临床影像组学模型对胆囊癌预后的预测价值. 中华消化外科杂志, 2022, 21(5): 656-664.
- 79. Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data. J Hematol Oncol, 2021, 14(1): 154. doi:10.1186/s13045-021-01167-2.
- 80. Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part Ⅱ: convolutional neural network interpretation using radiologic imaging features. Eur Radiol, 2019, 29(7): 3348-3357.
- 81. Wang Y, Shao J, Wang P, et al. Deep learning radiomics to predict regional lymph node staging for hilar cholangiocarcinoma. Front Oncol, 2021, 11: 721460. doi:10.3389/fonc.2021.721460.
- 82. Shen Z, Shang X, Zhao M, et al. A learning-based framework for error compensation in 3D printing. IEEE Trans Cybern, 2019, 49(11): 4042-4050.
- 83. Ghaednia H, Fourman MS, Lans A, et al. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J, 2021, 21(10): 1617-1625.
- 84. 石镇维, 刘再毅. 影像组学研究的困境和出路. 中华放射学杂志, 2022, 56(1): 9-11.