1. |
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma. Lancet, 2022, 400(10360): 1345-1362.
|
2. |
Duan R, Gong F, Wang Y, et al. Transarterial chemoembolization (TACE) plus tyrosine kinase inhibitors versus TACE in patients with hepatocellular carcinoma: a systematic review and meta-analysis. World J Surg Oncol, 2023, 21(1): 120. doi: 10.1186/s12957-023-02961-7.
|
3. |
Sheng J, Kohno S, Okada N, et al. Treatment of retinoblastoma 1-intact hepatocellular carcinoma with cyclin-dependent kinase 4/6 inhibitor combination therapy. Hepatology, 2021, 74(4): 1971-1993.
|
4. |
Lang L, Teng Y. Fibroblast growth factor receptor 4 targeting in cancer: new insights into mechanisms and therapeutic strategies. Cells, 2019, 8(1): 31. doi: 10.3390/cells8010031.
|
5. |
Kurebayashi Y, Ojima H, Tsujikawa H, et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology, 2018, 68(3): 1025-1041.
|
6. |
何玲华, 陈刚, 佟虹兴, 等. 肿瘤相关中性粒细胞在肝细胞癌中的作用研究进展. 中国普外基础与临床杂志, 2022, 29(8): 1109-1114.
|
7. |
Szefel J, Danielak A, Kruszewski WJ. Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci, 2019, 64(1): 104-110.
|
8. |
Wang L, Kuang Z, Zhang D, et al. Reactive oxygen species in immune cells: a new antitumor target. Biomed Pharmacother, 2021, 133: 110978. doi: 10.1016/j.biopha.2020.110978.
|
9. |
Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol, 2020, 1224: 117-140.
|
10. |
Boral B, Ballı HT, Sözütok S, et al. Clinical and prognostic significance of CD14+HLA-DR-/low myeloid-derived suppressor cells in patients with hepatocellular carcinoma received transarterial radioembolization with Yttrium-90. Scand J Immunol, 2022, 95(3): e13132. doi: 10.1111/sji.13132.
|
11. |
Nielsen SR, Schmid MC. Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm, 2017, 2017: 9624760. doi: 10.1155/2017/9624760.
|
12. |
文静, 黄洁, 李云云, 等. 肿瘤相关巨噬细胞相关性miR-99a 对子宫内膜癌细胞生长和侵袭的调控作用. 中国癌症杂志, 2020, 30(8): 561-569.
|
13. |
陈家川, 胡宗强, 陈刚, 等. 原发性肝癌中肿瘤相关巨噬细胞的作用和相关治疗应用. 中国普外基础与临床杂志, 2022, 29(3): 389-395.
|
14. |
Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell, 2019, 179(4): 829-845.
|
15. |
Mantovani A, Allavena P, Marchesi F, et al. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov, 2022, 21(11): 799-820.
|
16. |
Fathi F, Saidi RF, Banafshe HR, et al. Changes in immune profile affect disease progression in hepatocellular carcinoma. Int J Immunopathol Pharmacol, 2022, 36: 3946320221078476. doi: 10.1177/03946320221078476.
|
17. |
Wang S, Gao S, Zhou D, et al. The role of the CD39-CD73-adenosine pathway in liver disease. J Cell Physiol, 2021, 236(2): 851-862.
|
18. |
Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1”versus “N2” TAN. Cancer Cell, 2009, 16(3): 183-194.
|
19. |
Laschtowitz A, Lambrecht J, Puengel T, et al. Serum CXCL5 detects early hepatocellular carcinoma and indicates tumor progression. Int J Mol Sci, 2023, 24(6): 5295. doi: 10.3390/ijms24065295.
|
20. |
Zhou SL, Yin D, Hu ZQ, et al. A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology, 2019, 70(4): 1214-1230.
|
21. |
Zhou SL, Zhou ZJ, Hu ZQ, et al. Tumor-associated neutrophils recruit macrophages and t-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology, 2016, 150(7): 1646-1658.
|
22. |
Pathni A, Özçelikkale A, Rey-Suarez I, et al. Cytotoxic T lymphocyte activation signals modulate cytoskeletal dynamics and mechanical force generation. Front Immunol, 2022, 13: 779888. doi: 10.3389/fimmu.2022.779888.
|
23. |
Yu Y, You S, Fan R, et al. UCK2 regulated by miR-139-3p regulates the progression of hepatocellular carcinoma cells. Future Oncol, 2022, 18(8): 979-990.
|
24. |
Ning Z, Liu K, Xiong H. Roles of BTLA in immunity and immune disorders. Front Immunol, 2021, 12: 654960. doi: 10.3389/fimmu.2021.654960.
|
25. |
Granito A, Muratori L, Lalanne C, et al. Hepatocellular carcinoma in viral and autoimmune liver diseases: role of CD4+ CD25+ Foxp3+ regulatory T cells in the immune microenvironment. World J Gastroenterol, 2021, 27(22): 2994-3009.
|
26. |
Yu Y. The function of NK cells in tumor metastasis and NK cell-based immunotherapy. Cancers (Basel), 2023, 15(8) : 2323. doi: 10.3390/cancers15082323.
|
27. |
Chen Z, Yang Y, Liu LL, et al. Strategies to augment natural killer (NK) cell activity against solid tumors. Cancers (Basel), 2019, 11(7): 1040. doi: 10.3390/cancers11071040.
|
28. |
Leone K, Poggiana C, Zamarchi R. The interplay between circulating tumor cells and the immune system: from immune escape to cancer immunotherapy. Diagnostics (Basel), 2018, 8(3): 59. doi: 10.3390/diagnostics8030059.
|
29. |
Sprinzl MF, Galle PR. Immune control in hepatocellular carcinoma development and progression: role of stromal cells. Semin Liver Dis, 2014, 34(4): 376-388.
|
30. |
Xiang X, Niu YR, Wang ZH, et al. Cancer-associated fibroblasts: vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev, 2022, 67: 35-48.
|
31. |
凌煜玮, 康骅. 肿瘤相关成纤维细胞在肿瘤微环境中免疫调节作用的研究现状. 中国普外基础与临床杂志, 2020, 27(12): 1593-1597.
|
32. |
Akkız H. Emerging role of cancer-associated fibroblasts in progression and treatment of hepatocellular carcinoma. Int J Mol Sci, 2023, 24(4): 3941. doi: 10.3390/ijms24043941.
|
33. |
Lin L, Chen S, Wang H, et al. SPTBN1 inhibits inflammatory responses and hepatocarcinogenesis via the stabilization of SOCS1 and downregulation of p65 in hepatocellular carcinoma. Theranostics, 2021, 11(9): 4232-4250.
|
34. |
Quiroz Reyes AG, Lozano Sepulveda SA, Martinez-Acuña N, et al. Cancer stem cell and hepatic stellate cells in hepatocellular carcinoma. Technol Cancer Res Treat, 2023, 22: 15330338231163677. doi: 10.1177/15330338231163677.
|
35. |
Hsieh CC, Hung CH, Chiang M, et al. Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling. Int J Mol Sci, 2019, 20(20): 5079. doi: 10.3390/ijms20205079.
|
36. |
Dunham RM, Thapa M, Velazquez VM, et al. Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J Immunol, 2013, 190(5): 2009-2016.
|
37. |
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis, 2022, 54(5): 598-613.
|
38. |
Lurje I, Hammerich L, Tacke F. Dendritic cell and T cell crosstalk in liver fibrogenesis and hepatocarcinogenesis: implications for prevention and therapy of liver cancer. Int J Mol Sci, 2020, 21(19): 7378. doi: 10.3390/ijms21197378.
|
39. |
Wculek SK, Cueto FJ, Mujal AM, et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol, 2020, 20(1): 7-24.
|
40. |
Andrews TS, Kiselev VY, McCarthy D, et al. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc, 2021, 16(1): 1-9.
|
41. |
Li XY, Shen Y, Zhang L, et al. Understanding initiation and progression of hepatocellular carcinoma through single cell sequencing. Biochim Biophys Acta Rev Cancer, 2022, 1877(3): 188720. doi: 10.1016/j.bbcan.2022.188720.
|
42. |
Sangro B, Sarobe P, Hervás-Stubbs S, et al. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2021, 18(8): 525-543.
|
43. |
Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol, 2018, 19(7): 940-952.
|
44. |
Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase Ⅲ trial. J Clin Oncol, 2020, 38(3): 193-202.
|