1. |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther, 2022, 7(1): 378.
|
3. |
da Silva DA, De Luca A, Squitti R, et al. Copper in tumors and the use of copper-based compounds in cancer treatment. J Inorg Biochem, 2022, 226: 111634.
|
4. |
Liu Y, Wang J, Jiang M. Copper-related genes predict prognosis and characteristics of breast cancer. Front Immunol, 2023, 14: 1145080.
|
5. |
Saleh SAK, Adly HM, Abdelkhaliq AA, et al. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol, 2020, 14(1): 44-49.
|
6. |
Nayak SB, Bhat VR, Upadhyay D, et al. Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian J Physiol Pharmacol, 2003, 47(1): 108-110.
|
7. |
Pilankar A, Singhavi H, Raghuram GV, et al. A pro-oxidant combination of resveratrol and copper down-regulates hallmarks of cancer and immune checkpoints in patients with advanced oral cancer: Results of an exploratory study (RESCU 004). Front Oncol, 2022, 12: 1000957.
|
8. |
Kazi Tani LS, Gourlan AT, Dennouni-Medjati N, et al. Copper isotopes and copper to zinc ratio as possible biomarkers for thyroid cancer. Front Med (Lausanne), 2021, 8: 698167.
|
9. |
Lee MH, Gao YT, Huang YH, et al. A metallomic approach to assess associations of serum metal levels with gallstones and gallbladder cancer. Hepatology, 2020, 71(3): 917-928.
|
10. |
Lin S, Xu Y, Liu B, et al. A novel cuproptosis-related gene signature for overall survival prediction in uterine corpus endometrial carcinoma (UCEC). Heliyon, 2023, 9(4): e14613.
|
11. |
Guan X, Lu N, Zhang J. The combined prognostic model of copper-dependent to predict the prognosis of pancreatic cancer. Front Genet, 2022, 13: 978988.
|
12. |
Lutsenko S. Dynamic and cell-specific transport networks for intracellular copper ions. J Cell Sci, 2021, 134(21): jcs240523.
|
13. |
Weiss KC, Linder MC. Copper transport in rats involving a new plasma protein. Am J Physiol, 1985, 249(1 Pt 1): E77-E88. doi: 10.1152/ajpendo.1985.249.1.E77.
|
14. |
Moriya M, Ho YH, Grana A, et al. Copper is taken up efficiently from albumin and alpha 2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol, 2008, 295(3): C708-C721.
|
15. |
Laporte D, González A, Moenne A. Copper-induced activation of MAPKs, CDPKs and CaMKs triggers activation of hexokinase and inhibition of pyruvate kinase leading to increased synthesis of ASC, GSH and NADPH in ulva compressa. Front Plant Sci, 2020, 11: 990.
|
16. |
Boyd SD, Liu L, Bulla L, et al. Quantifying the interaction between copper-zinc superoxide dismutase (Sod1) and its copper chaperone (Ccs1). J Proteomics Bioinform, 2018, 11(4): 473.
|
17. |
Zhu SY, Zhou WQ, Niu YY, et al. COX17 restricts renal fibrosis development by maintaining mitochondrial copper homeostasis and restoring complex Ⅳ activity. Acta Pharmacol Sin, 2023 May 22. doi: 10.1038/s41401-023-01098-3.
|
18. |
Barca A, Ippati S, Urso E, et al. Carnosine modulates the Sp1-Slc31a1/Ctr1 copper-sensing system and influences copper homeostasis in murine CNS-derived cells. Am J Physiol Cell Physiol, 2019, 316(2): C235-C245.
|
19. |
Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and autophagy. Autophagy, 2023, 19(8): 2175-2195.
|
20. |
Ros J, Baraibar I, Sardo E, et al. BRAF, MEK and EGFR inhibition as treatment strategies in BRAFV600E metastatic colorectal cancer. Ther Adv Med Oncol, 2021, 13: 1758835921992974. doi: 10.1177/1758835921992974.
|
21. |
Turski ML, Brady DC, Kim HJ, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol Cell Biol, 2012, 32(7): 1284-1295.
|
22. |
Brady DC, Crowe MS, Turski ML, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509(7501): 492-496.
|
23. |
Bamodu OA, Chang HL, Ong JR, et al. Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma. Cells, 2020, 9(3): 746.
|
24. |
Guo J, Cheng J, Zheng N, et al. Copper promotes tumorigenesis by activating the PDK1-AKT oncogenic pathway in a copper transporter 1 dependent manner. Adv Sci (Weinh), 2021, 8(18): e2004303.
|
25. |
Yang Y, Cao Y. The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol, 2022, 86(Pt 3): 251-261.
|
26. |
Rigiracciolo DC, Scarpelli A, Lappano R, et al. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget, 2015, 6(33): 34158-34177.
|
27. |
Das A, Ash D, Fouda AY, et al. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat Cell Biol, 2022, 24(1): 35-50.
|
28. |
Liao Y, Zhao J, Bulek K, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun, 2020, 11(1): 900.
|
29. |
Denoyer D, Masaldan S, La Fontaine S, et al. Targeting copper in cancer therapy: ‘copper that cancer’. Metallomics, 2015, 7(11): 1459-1476.
|
30. |
Cheng F, Peng G, Lu Y, et al. Relationship between copper and immunity: The potential role of copper in tumor immunity. Front Oncol, 2022, 12: 1019153.
|
31. |
Gérard C, Bordeleau LJ, Barralet J, et al. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 2010, 31(5): 824-831.
|
32. |
Suska F, Esposito M, Gretzer C, et al. IL-1alpha, IL-1beta and TNF-alpha secretion during in vivo/ ex vivo cellular interactions with titanium and copper. Biomaterials, 2003, 24(3): 461-468.
|
33. |
Abdelgawad ME, Darwish H, Nabawy MM, et al. Development of novel score based on angiogenic panel for accurate diagnosis of hepatocellular carcinoma among hepatitis C virus high-risk patients. Infect Genet Evol, 2020, 85: 104572.
|
34. |
Park KC, Fouani L, Jansson PJ, et al. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics, 2016, 8(9): 874-886.
|
35. |
Denoyer D, Clatworthy SAS, Cater MA. Copper complexes in cancer therapy. Met Ions Life Sci, 2018, 18. doi: 10.1515/9783110470734-022.
|
36. |
Boyd SD, Ullrich MS, Skopp A, et al. Copper sources for sod1 activation. Antioxidants (Basel), 2020, 9(6): 500.
|
37. |
Nagaraju GP, Dontula R, El-Rayes BF, et al. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis, 2014, 35(5): 967-973.
|
38. |
De Luca A, Barile A, Arciello M, et al. Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy. J Trace Elem Med Biol, 2019, 55: 204-213.
|
39. |
Kmiecik AM, Pula B, Suchanski J, et al. Metallothionein-3 increases triple-negative breast cancer cell invasiveness via induction of metalloproteinase expression. PLoS One, 2015, 10(5): e0124865.
|
40. |
Ismail IA, Kang HS, Lee HJ, et al. DJ-1 upregulates breast cancer cell invasion by repressing KLF17 expression. Br J Cancer, 2014, 110(5): 1298-1306.
|
41. |
Mattie MD, McElwee MK, Freedman JH. Mechanism of copper-activated transcription: activation of AP-1, and the JNK/SAPK and p38 signal transduction pathways. J Mol Biol, 2008, 383(5): 1008-1018.
|
42. |
Kamiya T. Copper in the tumor microenvironment and tumor metastasis. J Clin Biochem Nutr, 2022, 71(1): 22-28.
|
43. |
Maomao C, He L, Dianqin S, et al. Current cancer burden in China: epidemiology, etiology, and prevention. Cancer Biol Med, 2022, 19(8): 1121-1138.
|
44. |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl), 2022, 135(5): 584-590.
|
45. |
Lin J, Zhang H, Yu H, et al. Epidemiological characteristics of primary liver cancer in mainland china from 2003 to 2020: A representative multicenter study. Front Oncol, 2022, 12: 906778.
|
46. |
Stepien M, Hughes DJ, Hybsier S, et al. Circulating copper and zinc levels and risk of hepatobiliary cancers in Europeans. Br J Cancer, 2017, 116(5): 688-696.
|
47. |
Peng F, Liu J, Wu JS, et al. Mouse extrahepatic hepatoma detected on microPET using copper (Ⅱ)-64 chloride uptake mediated by endogenous mouse copper transporter 1. Mol Imaging Biol, 2005, 7(5): 325-329.
|
48. |
Moriguchi M, Nakajima T, Kimura H, et al. The copper chelator trientine has an antiangiogenic effect against hepatocellular carcinoma, possibly through inhibition of interleukin-8 production. Int J Cancer, 2002, 102(5): 445-452.
|
49. |
Kuo MT, Huang YF, Chou CY, et al. Targeting the copper transport system to improve treatment efficacies of platinum-containing drugs in cancer chemotherapy. Pharmaceuticals (Basel), 2021, 14(6): 549.
|
50. |
Yan C, Niu Y, Ma L, et al. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J Transl Med, 2022, 20(1): 452.
|
51. |
Yu Z, Zhou R, Zhao Y, et al. Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif, 2019, 52(2): e12568.
|
52. |
Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy, 2023, 19(7): 1982-1996.
|
53. |
Watabe T, Liu Y, Kaneda-Nakashima K, et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu- and 225Ac-Labeled FAPI-04 in pancreatic cancer xenograft mouse models. J Nucl Med, 2020, 61(4): 563-569.
|
54. |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586): 1254-1261.
|
55. |
Huang X, Zhou S, Tóth J, et al. Cuproptosis-related gene index: A predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity. Front Immunol, 2022, 13: 978865.
|
56. |
Patel SG, Karlitz JJ, Yen T, et al. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol, 2022, 7(3): 262-274.
|
57. |
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol, 2020, 12(2): 124-148.
|
58. |
Baszuk P, Marciniak W, Derkacz R, et al. Blood copper levels and the occurrence of colorectal cancer in Poland. Biomedicines, 2021, 9(11): 1628.
|
59. |
Dankner M, Rose AAN, Rajkumar S, et al. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene, 2018, 37(24): 3183-3199.
|
60. |
Kopetz S, Desai J, Chan E, et al. PhaseⅡpilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol, 2015, 33(34): 4032-4038.
|
61. |
Baldari S, Di Rocco G, Heffern MC, et al. Effects of copper chelation on BRAFV600E positive colon carcinoma cells. Cancers (Basel), 2019, 11(5): 659.
|
62. |
Yang W, Wang Y, Huang Y, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed Pharmacother, 2023, 159: 114301.
|
63. |
Wang FH, Zhang XT, Li YF, et al. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2021. Cancer Commun (Lond), 2021, 41(8): 747-795.
|
64. |
Li K, Zhang A, Li X, et al. Advances in clinical immunotherapy for gastric cancer. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188615.
|
65. |
Du C, Guan X, Liu Y, et al. Disulfiram/copper induces antitumor activity against gastric cancer cells in vitro and in vivo by inhibiting S6K1 and c-Myc. Cancer Chemother Pharmacol, 2022, 89(4): 451-458.
|
66. |
Liu Y, Guan X, Wang M, et al. Disulfiram/Copper induces antitumor activity against gastric cancer via the ROS/MAPK and NPL4 pathways. Bioengineered, 2022, 13(3): 6579-6589.
|
67. |
Liu Y, Luo G, Yan Y, et al. A pan-cancer analysis of copper homeostasis-related gene lipoyltransferase 1: Its potential biological functions and prognosis values. Front Genet, 2022, 13: 1038174.
|
68. |
Xia Y, Liu X, Zhang L, et al. A new Schiff base coordinated copper (Ⅱ) compound induces apoptosis and inhibits tumor growth in gastric cancer. Cancer Cell Int, 2019, 19: 81.
|
69. |
Tang X, Guo T, Wu X, et al. Clinical significance and immune infiltration analyses of the cuproptosis-related human copper proteome in gastric cancer. Biomolecules, 2022, 12(10): 1459.
|