1. |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin, 2023, 73(1): 17-48.
|
2. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
3. |
Traub B, Link KH, Kornmann M. Curing pancreatic cancer. Semin Cancer Biol, 2021, 76: 232-246.
|
4. |
Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer. Lancet, 2020, 395(10242): 2008-2020.
|
5. |
Cai J, Chen H, Lu M, et al. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis. Cancer Lett, 2021, 520: 1-11.
|
6. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin, 2021, 71(1): 7-33.
|
7. |
Seyed Hosseini E, Nikkhah A, Sotudeh A, et al. The impact of LncRNA dysregulation on clinicopathology and survival of pancreatic cancer: a systematic review and meta-analysis (PRISMA compliant). Cancer Cell Int, 2021, 21(1): 447. doi: 10.1186/s12935-021-02125-1.
|
8. |
Xu J, Xu J, Liu X, et al. The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer. Cell Death Discov, 2022, 8(1): 287. doi: 10.1038/s41420-022-01061-x.
|
9. |
Wang L, Cho KB, Li Y, et al. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci, 2019, 20(22): 5758. doi: 10.3390/ijms20225758.
|
10. |
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell, 2011, 146(3): 353-358.
|
11. |
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.
|
12. |
Yang N, Liu K, Yang M, et al. ceRNAs in cancer: mechanism and functions in a comprehensive regulatory network. J Oncol, 2021, 2021: 4279039. doi: 10.1155/2021/4279039.
|
13. |
Qu J, Li M, Zhong W, et al. Competing endogenous RNA in cancer: a new pattern of gene expression regulation. Int J Clin Exp Med, 2015, 8(10): 17110-17116.
|
14. |
Liu Y, Khan S, Li L, et al. Molecular mechanisms of thyroid cancer: a competing endogenous RNA (ceRNA) point of view. Biomed Pharmacother, 2022, 146: 112251. doi: 10.1016/j.biopha.2021.112251.
|
15. |
Yu XM, Li SJ, Yao ZT, et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene, 2023, 42(14): 1101-1116.
|
16. |
Ashrafizadeh M, Rabiee N, Kumar AP, et al. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discov Today, 2022, 27(8): 2181-2198.
|
17. |
Chen S, Guo W, Meng M, et al. LncRNA SNHG1 promotes the progression of pancreatic cancer by regulating FGFR1 expression via competitively binding to miR-497. Front Oncol, 2022, 12: 813850. doi: 10.3389/fonc.2022.813850.
|
18. |
Li N, Yang G, Luo L, et al. lncRNA THAP9-AS1 promotes pancreatic ductal adenocarcinoma growth and leads to a poor clinical outcome via sponging miR-484 and interacting with YAP. Clin Cancer Res, 2020, 26(7): 1736-1748.
|
19. |
Wu Y, Zhu B, Yan Y, et al. Long non-coding RNA SNHG1 stimulates ovarian cancer progression by modulating expression of miR-454 and ZEB1. Mol Oncol, 2021, 15(5): 1584-1596.
|
20. |
Zhang M, Yang L, Hou L, et al. LncRNA SNHG1 promotes tumor progression and cisplatin resistance through epigenetically silencing miR-381 in breast cancer. Bioengineered, 2021, 12(2): 9239-9250.
|
21. |
Meng F, Liu J, Lu T, et al. SNHG1 knockdown upregulates miR-376a and downregulates FOXK1/Snail axis to prevent tumor growth and metastasis in HCC. Mol Ther Oncolytics, 2021, 21: 264-277.
|
22. |
Tan X, Chen WB, Lv DJ, et al. LncRNA SNHG1 and RNA binding protein hnRNPL form a complex and coregulate CDH1 to boost the growth and metastasis of prostate cancer. Cell Death Dis, 2021, 12(2): 138. doi: 10.1038/s41419-021-03413-4.
|
23. |
Zhou D, He S, Zhang D, et al. LINC00857 promotes colorectal cancer progression by sponging miR-150-5p and upregulating HMGB3 (high mobility group box 3) expression. Bioengineered, 2021, 12(2): 12107-12122.
|
24. |
Zhang W, Ji K, Min C, et al. Oncogenic LINC00857 recruits TFAP2C to elevate FAT1 expression in gastric cancer. Cancer Sci, 2023, 114(1): 63-74.
|
25. |
Huang Y, Lin Y, Song X, et al. LINC00857 contributes to proliferation and lymphomagenesis by regulating miR-370-3p/CBX3 axis in diffuse large B-cell lymphoma. Carcinogenesis, 2021, 42(5): 733-741.
|
26. |
Ren X, Liu J, Wang R, et al. Exploring the oncogenic roles of LINC00857 in pan-cancer. Front Pharmacol, 2022, 13: 996686. doi: 10.3389/fphar.2022.996686.
|
27. |
Chen P, Zeng Z, Wang J, et al. Long noncoding RNA LINC00857 promotes pancreatic cancer proliferation and metastasis by regulating the miR-130b/RHOA axis. Cell Death Discov, 2022, 8(1): 198. doi: 10.1038/s41420-022-01008-2.
|
28. |
Li C, Li X, Zhang Y, et al. DSCAM-AS1 promotes cervical carcinoma cell proliferation and invasion via sponging miR-338-3p. Environ Sci Pollut Res Int, 2022, 29(39): 58906-58914.
|
29. |
Wang Y, Zhai S, Xing J, et al. Long noncoding RNA DSCAM-AS1 facilitates proliferation and migration of hemangioma endothelial cells by targeting miR-411-5p/TPD52 axis. Biomed Res Int, 2022, 2022: 8696432. doi: 10.1155/2022/8696432.
|
30. |
Ghafouri-Fard S, Khoshbakht T, Taheri M, et al. A review on the carcinogenic roles of DSCAM-AS1. Front Cell Dev Biol, 2021, 9: 758513. doi: 10.3389/fcell.2021.758513.
|
31. |
Huang X, Wang Z, Hou S, et al. Long non-coding RNA DSCAM-AS1 promotes pancreatic cancer progression via regulating the miR-136-5p/PBX3 axis. Bioengineered, 2022, 13(2): 4153-4165.
|
32. |
Liu Y, Shi M, He X, et al. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol, 2022, 15(1): 52. doi: 10.1186/s13045-022-01272-w.
|
33. |
Ma YS, Yang XL, Liu YS, et al. Long non-coding RNA NORAD promotes pancreatic cancer stem cell proliferation and self-renewal by blocking microRNA-202-5p-mediated ANP32E inhibition. J Transl Med, 2021, 19(1): 400. doi: 10.1186/s12967-021-03052-5.
|
34. |
Fang X, Cai Y, Xu Y, et al. Exosome-mediated lncRNA SNHG11 regulates angiogenesis in pancreatic carcinoma through miR-324-3p/VEGFA axis. Cell Biol Int, 2022, 46(1): 106-117.
|
35. |
Wu R, Su Z, Zhao L, et al. Extracellular vesicle-loaded oncogenic lncRNA NEAT1 from adipose-derived mesenchymal stem cells confers gemcitabine resistance in pancreatic cancer via miR-491-5p/Snail/SOCS3 axis. Stem Cells Int, 2023, 2023: 6510571. doi: 10.1155/2023/6510571.
|
36. |
Liu Y, Luo J, Zeng J, et al. Competing endogenous RNA analysis identified lncRNA DSCR9 as a novel prognostic biomarker associated with metastasis and tumor microenvironment in renal cell carcinoma. Oncol Lett, 2023, 26(1): 290. doi: 10.3892/ol.2023.13876.
|
37. |
Li M, Lin C, Cai Z. Downregulation of the long noncoding RNA DSCR9 (Down syndrome critical region 9) delays breast cancer progression by modulating microRNA-504-5p-dependent G protein-coupled receptor 65. Hum Cell. 2023;36(4): 1516-1534.
|
38. |
Huang H, Li X, Zhang X, et al. DSCR9/miR-21-5p axis inhibits pancreatic cancer proliferation and resistance to gemcitabine via BTG2 signaling. Acta Biochim Biophys Sin (Shanghai), 2022, 54(12): 1775-1788.
|
39. |
Shi Y, Zhang DD, Liu JB, et al. Comprehensive analysis to identify DLEU2L/TAOK1 axis as a prognostic biomarker in hepatocellular carcinoma. Mol Ther Nucleic Acids, 2021, 23: 702-718.
|
40. |
Xu F, Wu H, Xiong J, et al. Long non-coding RNA DLEU2L targets miR-210-3p to suppress gemcitabine resistance in pancreatic cancer cells via BRCA2 regulation. Front Mol Biosci, 2021, 8: 645365. doi: 10.3389/fmolb.2021.645365.
|
41. |
Guz M, Jeleniewicz W, Cybulski M, et al. Serum miR-210-3p can be used to differentiate between patients with pancreatic ductal adenocarcinoma and chronic pancreatitis. Biomed Rep, 2021, 14(1): 10. doi: 10.3892/br.2020.1386.
|
42. |
Yang Z, Zhao N, Cui J, et al. Exosomes derived from cancer stem cells of gemcitabine-resistant pancreatic cancer cells enhance drug resistance by delivering miR-210. Cell Oncol (Dordr), 2020, 43(1): 123-136.
|
43. |
Pan S, Shen M, Zhou M, et al. Long noncoding RNA LINC01111 suppresses pancreatic cancer aggressiveness by regulating DUSP1 expression via microRNA-3924. Cell Death Dis, 2019, 10(12): 883. doi: 10.1038/s41419-019-2123-y.
|
44. |
Li K, Han H, Gu W, et al. Long non-coding RNA LINC01963 inhibits progression of pancreatic carcinoma by targeting miR-641/TMEFF2. Biomed Pharmacother, 2020, 129: 110346. doi: 10.1016/j.biopha.2020.110346.
|
45. |
Li X, Zhou S, Fan T, et al. LncRNA DGCR 5/miR-27a-3p/BNIP3 promotes cell apoptosis in pancreatic cancer by regulating the p38 MAPK pathway. Int J Mol Med, 2020, 46(2): 729-739.
|
46. |
Gao ZQ, Wang JF, Chen DH, et al. Long non-coding RNA GAS5 suppresses pancreatic cancer metastasis through modulating miR-32-5p/PTEN axis. Cell Biosci, 2017, 7: 66. doi: 10.1186/s13578-017-0192-0.
|
47. |
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev, 2022, 182: 114113. doi: 10.1016/j.addr.2022.114113.
|
48. |
Liang Y, Chen X, Wu Y, et al. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ, 2018, 25(11): 1980-1995.
|
49. |
Vaidya AM, Sun Z, Ayat N, et al. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic lncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug Chem, 2019, 30(3): 907-919.
|
50. |
Pang H, Ren Y, Li H, et al. LncRNAs linc00311 and AK141205 are identified as new regulators in STAT3-mediated neuropathic pain in bCCI rats. Eur J Pharmacol, 2020, 868: 172880. doi: 10.1016/j.ejphar.2019.172880.
|
51. |
Xu L, Wei B, Hui H, et al. Positive feedback loop of lncRNA LINC01296/miR-598/Twist1 promotes non-small cell lung cancer tumorigenesis. J Cell Physiol, 2019, 234(4): 4563-4571.
|
52. |
Schultheis B, Strumberg D, Kuhlmann J, et al. Safety, efficacy and pharcacokinetics of targeted therapy with the liposomal RNA interference therapeutic Atu027 combined with gemcitabine in patients with pancreatic adenocarcinoma. A randomized phase Ⅰb/Ⅱa study. Cancers (Basel), 2020, 12(11): 3130. doi: 10.3390/cancers12113130.
|
53. |
Zorde-Khvalevsky E, Gabai R, Rachmut IH, et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci USA, 2013, 110(51): 20723-20728.
|
54. |
Adams D, Polydefkis M, González-Duarte A, et al. Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study. Lancet Neurol, 2021, 20(1): 49-59.
|
55. |
Balwani M, Sardh E, Ventura P, et al. Phase 3 Trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med, 2020, 382(24): 2289-2301.
|
56. |
Crooke ST, Baker BF, Crooke RM, et al. Antisense technology: an overview and prospectus. Nat Rev Drug Discov, 2021, 20(6): 427-453.
|
57. |
Arun G, Diermeier S, Akerman M, et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev, 2016, 30(1): 34-51.
|
58. |
Taiana E, Favasuli V, Ronchetti D, et al. Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia, 2020, 34(1): 234-244.
|
59. |
Sutaria DS, Jiang J, Azevedo-Pouly ACP, et al. Expression profiling identifies the noncoding processed transcript of HNRNPU with proliferative properties in pancreatic ductal adenocarcinoma. Noncoding RNA, 2017, 3(3): 24. doi: 10.3390/ncrna3030024.
|
60. |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
|
61. |
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
|
62. |
Chen Y, Li Z, Chen X, et al. Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B, 2021, 11(2): 340-354.
|
63. |
Dorn A, Glaß M, Neu CT, et al. LINC00261 is differentially expressed in pancreatic cancer subtypes and regulates a pro-epithelial cell identity. Cancers (Basel), 2020, 12(5): 1227. doi: 10.3390/cancers12051227.
|
64. |
Guo R, Su Y, Zhang Q, et al. LINC00478-derived novel cytoplasmic lncRNA LacRNA stabilizes PHB2 and suppresses breast cancer metastasis via repressing MYC targets. J Transl Med, 2023, 21(1): 120. doi: 10.1186/s12967-023-03967-1.
|
65. |
Chang KW, Hung WW, Chou CH, et al. LncRNA MIR31HG drives oncogenicity by inhibiting the limb-bud and heart development gene ( LBH) during oral carcinoma. Int J Mol Sci, 2021, 22(16): 8383. doi: 10.3390/ijms22168383.
|
66. |
Boos F, Oo JA, Warwick T, et al. The endothelial-enriched lncRNA LINC00607 mediates angiogenic function. Basic Res Cardiol, 2023, 118(1): 5. doi: 10.1007/s00395-023-00978-3.
|
67. |
Goyal A, Myacheva K, Groß M, et al. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res, 2017, 45(3): e12. doi: 10.1093/nar/gkw883.
|
68. |
Ren Y, Wang YF, Zhang J, et al. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin Epigenetics, 2019, 11(1): 29. doi: 10.1186/s13148-019-0624-2.
|
69. |
Ji D, Hou L, Xie C, et al. Deoxyelephantopin suppresses pancreatic cancer progression in vitro and in vivo by targeting linc00511/miR-370-5p/p21 promoter axis. J Oncol, 2022, 2022: 3855462. doi: 10.1155/2022/3855462.
|
70. |
Matouk I, Raveh E, Ohana P, et al. The increasing complexity of the oncofetal H19 gene locus: functional dissection and therapeutic intervention. Int J Mol Sci, 2013, 14(2): 4298-4316.
|
71. |
Gofrit ON, Benjamin S, Halachmi S, et al. DNA based therapy with diphtheria toxin-A BC-819: a phase 2b marker lesion trial in patients with intermediate risk nonmuscle invasive bladder cancer. J Urol, 2014, 191(6): 1697-1702.
|
72. |
Lavie O, Edelman D, Levy T, et al. A phase 1/2a, dose-escalation, safety, pharmacokinetic, and preliminary efficacy study of intraperitoneal administration of BC-819 (H19-DTA) in subjects with recurrent ovarian/peritoneal cancer. Arch Gynecol Obstet, 2017, 295(3): 751-761.
|
73. |
Hanna N, Ohana P, Konikoff FM, et al. Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Ther, 2012, 19(6): 374-381.
|