Citation: ZHOU Wei, LIU Tao. Research progress of YAP/TAZ in regulating drug resistance in cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(3): 367-372. doi: 10.7507/1007-9424.202310080 Copy
1. | Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora’s box of cancer stem cells. Stem Cell Res Ther, 2022, 13(1): 181. |
2. | Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol, 2023, 18: 123-148. |
3. | Bao MH, Wong CC. Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells, 2021, 10(7): 1715. |
4. | Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective. Drug Resist Updat, 2021, 59: 100796. |
5. | 完家进, 朱芮, 杨联河. 外泌体与肿瘤化疗耐药研究进展. 中华肿瘤防治杂志, 2019, 26(12): 891-896. |
6. | Mohajan S, Jaiswal PK, Vatanmakarian M, et al. Hippo pathway: regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett, 2021, 507: 112-123. |
7. | 王翊凯, 蔡建强. Hippo-YAP信号通路及其与肝癌关系的研究进展. 癌症进展, 2017, 15(12): 1396-1399, 1476. |
8. | Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol, 2018, 20(8): 888-899. |
9. | Wei Y, Hui VLZ, Chen Y, et al. YAP/TAZ: molecular pathway and disease therapy. MedComm (2020), 2023, 4(4): e340. |
10. | Zhu N, Yang R, Wang X, et al. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai), 2023, 55(6): 904-913. |
11. | Zhao M, Zhang Y, Jiang Y, et al. YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J Exp Clin Cancer Res, 2021, 40(1): 99. |
12. | Mao W, Mai J, Peng H, et al. YAP in pancreatic cancer: oncogenic role and therapeutic strategy. Theranostics, 2021, 11(4): 1753-1762. |
13. | Qi S, Zhu Y, Liu X, et al. WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy. Mol Cell, 2022, 82(10): 1850-1864. |
14. | Chan EH, Nousiainen M, Chalamalasetty RB, et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene, 2005, 24(12): 2076-2086. |
15. | Dhanaraman T, Singh S, Killoran RC, et al. RASSF effectors couple diverse RAS subfamily GTPases to the Hippo pathway. Sci Signal, 2020, 13(653): eabb4778. |
16. | Delgado ILS, Carmona B, Nolasco S, et al. MOB: pivotal conserved proteins in cytokinesis, cell architecture and tissue homeostasis. Biology (Basel), 2020, 9(12): 413. |
17. | Meng Z, Moroishi T, Mottier-Pavie V, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun, 2015, 6: 8357. |
18. | Li FL, Fu V, Liu G, et al. Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides. Nat Chem Biol, 2022, 18(10): 1076-1086. |
19. | Hao X, Zhang Y, Shi X, et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3ζ. J Exp Clin Cancer Res, 2022, 41(1): 281. |
20. | Zhao B, Li L, Tumaneng K, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF (β-TRCP). Genes Dev, 2010, 24(1): 72-85. |
21. | Liu CY, Zha ZY, Zhou X, et al. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF β-TrCP E3 ligase. J Biol Chem, 2010, 285(48): 37159-37169. |
22. | Liu X, Yang N, Figel SA, et al. PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene, 2013, 32(10): 1266-1273. |
23. | Oka T, Remue E, Meerschaert K, et al. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J, 2010, 432(3): 461-472. |
24. | Feng X, Degese MS, Iglesias-Bartolome R, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell, 2014, 25(6): 831-845. |
25. | Zhai L, Yang X, Dong J, et al. O-GlcNAcylation mediates endometrial cancer progression by regulating the Hippo-YAP pathway. Int J Oncol, 2023, 63(2): 90. |
26. | Kim E, Kang JG, Kang MJ, et al. O-GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity. Proc Natl Acad Sci USA, 2020, 117(25): 14259-14269. |
27. | Yang S, Xu W, Liu C, et al. LATS1 K751 acetylation blocks activation of Hippo signalling and switches LATS1 from a tumor suppressor to an oncoprotein. Sci China Life Sci, 2022, 65(1): 129-141. |
28. | Tang J, Tian Z, Liao X, et al. SOX13/TRIM11/YAP axis promotes the proliferation, migration and chemoresistance of anaplastic thyroid cancer. Int J Biol Sci, 2021, 17(2): 417-429. |
29. | Wang DY, Wu YN, Huang JQ, et al. Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance. Chin J Cancer, 2016, 35: 47. |
30. | Huo X, Zhang Q, Liu AM, et al. Overexpression of Yes-associated protein confers doxorubicin resistance in hepatocellullar carcinoma. Oncol Rep, 2013, 29(2): 840-846. |
31. | Zhang H, Yu QL, Meng L, et al. TAZ-regulated expression of IL-8 is involved in chemoresistance of hepatocellular carcinoma cells. Arch Biochem Biophys, 2020, 693: 108571. |
32. | Tao Y, Shan L, Xu X, et al. Huaier augmented the chemo-therapeutic sensitivity of oxaliplatin via downregulation of YAP in hepatocellular carcinoma. J Cancer, 2018, 9(21): 3962-3970. |
33. | Dai XY, Zhuang LH, Wang DD, et al. Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells. Oncotarget, 2016, 7(6): 6933-6947. |
34. | Wu Q, Guo J, Liu Y, et al. YAP drives fate conversion and chemoresistance of small cell lung cancer. Sci Adv, 2021, 7(40): eabg1850. |
35. | Xiao L, Shi XY, Zhang Y, et al. YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. Onco Targets Ther, 2016, 9: 1105-1114. |
36. | Li C, Wang Q, Luo Y, et al. TAZ regulates the cisplatin resistance of epithelial ovarian cancer cells via the ANGPTL4/SOX2 axis. Anal Cell Pathol (Amst), 2022, 2022: 5632164. |
37. | Grattarola M, Cucci MA, Roetto A, et al. Post-translational down-regulation of Nrf2 and YAP proteins, by targeting deubiquitinases, reduces growth and chemoresistance in pancreatic cancer cells. Free Radic Biol Med, 2021, 174: 202-210. |
38. | He Z, Chen D, Wu J, et al. Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages. Arch Biochem Biophys, 2021, 702: 108838. |
39. | Gujral TS, Kirschner MW. Hippo pathway mediates resistance to cytotoxic drugs. Proc Natl Acad Sci USA, 2017, 114(18): E3729-E3738. |
40. | Mosca L, Ilari A, Fazi F, et al. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updat, 2021, 54: 100742. |
41. | Lai D, Ho KC, Hao Y, et al. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res, 2011, 71(7): 2728-2738. |
42. | Ma J, Fan Z, Tang Q, et al. Aspirin attenuates YAP and β-catenin expression by promoting β-TrCP to overcome docetaxel and vinorelbine resistance in triple-negative breast cancer. Cell Death Dis, 2020, 11(7): 530. |
43. | Wang XW, Zhao R, Yang ZY, et al. YAP inhibitor verteporfin suppresses tumor angiogenesis and overcomes chemoresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol, 2023, 149(10): 7703-7716. |
44. | Xia Y, Zhang YL, Yu C, et al. YAP/TEAD co-activator regulated pluripotency and chemoresistance in ovarian cancer initiated cells. PLoS One, 2014, 9(11): e109575. |
45. | Pattschull G, Walz S, Gründl M, et al. The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes. Cell Rep, 2019, 27(12): 3533-3546. |
46. | Yang S, Zhang L, Liu M, et al. CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res, 2013, 73(22): 6722-6733. |
47. | El-Sahli S, Hua K, Sulaiman A, et al. A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death Dis, 2021, 12(1): 8. |
48. | Chang L, Ruiz P, Ito T, et al. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell, 2021, 39(4): 466-479. |
49. | Ullah R, Yin Q, Snell AH, et al. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol, 2022, 85: 123-154. |
50. | Kim MH, Kim J, Hong H, et al. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J, 2016, 35(5): 462-478. |
51. | Misek SA, Newbury PA, Chekalin E, et al. Ibrutinib blocks YAP1 activation and reverses BRAF inhibitor resistance in melanoma cells. Mol Pharmacol, 2022, 101(1): 1-12. |
52. | Kim MH, Kim CG, Kim SK, et al. YAP-induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma. Cancer Immunol Res, 2018, 6(3): 255-266. |
53. | Garcia-Rendueles MER, Krishnamoorthy G, Saqcena M, et al. Yap governs a lineage-specific neuregulin1 pathway-driven adaptive resistance to RAF kinase inhibitors. Mol Cancer, 2022, 21(1): 213. doi: 10.1186/s12943-022-01676-9. |
54. | Schultz DF, Billadeau DD, Jois SD. EGFR trafficking: effect of dimerization, dynamics, and mutation. Front Oncol, 2023, 13: 1258371. doi: 10.3389/fonc.2023.1258371. |
55. | Tian X, Gu T, Lee MH, et al. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer, 2022, 1877(1): 188645. doi: 10.1016/j.bbcan.2021.188645. |
56. | Nilsson MB, Sun H, Robichaux J, et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med, 2020, 12(559): eaaz4589. doi: 10.1126/scitranslmed.aaz4589. |
57. | Ghiso E, Migliore C, Ciciriello V, et al. YAP-dependent AXL overexpression mediates resistance to EGFR inhibitors in NSCLC. Neoplasia, 2017, 19(12): 1012-1021. |
58. | Park HS, Lee DH, Kang DH, et al. Targeting YAP-p62 signaling axis suppresses the EGFR-TKI-resistant lung adenocarcinoma. Cancer Med, 2021, 10(4): 1405-1417. |
59. | Yu W, Zhang C, Wang Y, et al. YAP 5-methylcytosine modification increases its mRNA stability and promotes the transcription of exosome secretion-related genes in lung adenocarcinoma. Cancer Gene Ther, 2023, 30(1): 149-162. |
60. | González-Alonso P, Zazo S, Martín-Aparicio E, et al. The Hippo pathway transducers YAP1/TEAD induce acquired resistance to trastuzumab in HER2-positive breast cancer. Cancers (Basel), 2020, 12(5): 1108. doi: 10.3390/cancers12051108. |
61. | Coggins GE, Farrel A, Rathi KS, et al. YAP1 mediates resistance to MEK1/2 inhibition in neuroblastomas with hyperactivated RAS signaling. Cancer Res, 2019, 79(24): 6204-6214. |
62. | Rao G, Kim IK, Conforti F, et al. Dasatinib sensitises KRAS-mutant cancer cells to mitogen-activated protein kinase kinase inhibitor via inhibition of TAZ activity. Eur J Cancer, 2018, 99: 37-48. |
63. | Oliveira G, Wu CJ. Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer, 2023, 23(5): 295-316. |
64. | Liu X, Yang L, Tan X. PD-1/PD-L1 pathway: a double-edged sword in periodontitis. Biomed Pharmacother, 2023, 159: 114215. |
65. | Lee BS, Park DI, Lee DH, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun, 2017, 491(2): 493-499. |
66. | Yu M, Peng Z, Qin M, et al. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell, 2021, 81(6): 1216-1230. |
67. | Janse van Rensburg HJ, Azad T, Ling M, et al. The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res, 2018, 78(6): 1457-1470. |
68. | Ni X, Tao J, Barbi J, et al. YAP is essential for treg-mediated suppression of antitumor immunity. Cancer Discov, 2018, 8(8): 1026-1043. |
69. | Hao L, Guo Y, Peng Q, et al. Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in hepatocellular carcinoma. Phytomedicine, 2022, 96: 153913. |
70. | Paul S, Das K, Ghosh A, et al. Coagulation factor Ⅶa enhances programmed death-ligand 1 expression and its stability in breast cancer cells to promote breast cancer immune evasion. J Thromb Haemost, 2023, 21(12): 3522-3538. |
71. | Alì G, Poma AM, Di Stefano I, et al. Different pathological response and histological features following neoadjuvant chemotherapy or chemo-immunotherapy in resected non-small cell lung cancer. Front Oncol, 2023, 13: 1115156. |
72. | Liu-Chittenden Y, Huang B, Shim JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev, 2012, 26(12): 1300-1305. |
73. | Huggett MT, Jermyn M, Gillams A, et al. Phase Ⅰ/Ⅱ study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer, 2014, 110(7): 1698-1704. |
- 1. Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora’s box of cancer stem cells. Stem Cell Res Ther, 2022, 13(1): 181.
- 2. Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol, 2023, 18: 123-148.
- 3. Bao MH, Wong CC. Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells, 2021, 10(7): 1715.
- 4. Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective. Drug Resist Updat, 2021, 59: 100796.
- 5. 完家进, 朱芮, 杨联河. 外泌体与肿瘤化疗耐药研究进展. 中华肿瘤防治杂志, 2019, 26(12): 891-896.
- 6. Mohajan S, Jaiswal PK, Vatanmakarian M, et al. Hippo pathway: regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett, 2021, 507: 112-123.
- 7. 王翊凯, 蔡建强. Hippo-YAP信号通路及其与肝癌关系的研究进展. 癌症进展, 2017, 15(12): 1396-1399, 1476.
- 8. Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol, 2018, 20(8): 888-899.
- 9. Wei Y, Hui VLZ, Chen Y, et al. YAP/TAZ: molecular pathway and disease therapy. MedComm (2020), 2023, 4(4): e340.
- 10. Zhu N, Yang R, Wang X, et al. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai), 2023, 55(6): 904-913.
- 11. Zhao M, Zhang Y, Jiang Y, et al. YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J Exp Clin Cancer Res, 2021, 40(1): 99.
- 12. Mao W, Mai J, Peng H, et al. YAP in pancreatic cancer: oncogenic role and therapeutic strategy. Theranostics, 2021, 11(4): 1753-1762.
- 13. Qi S, Zhu Y, Liu X, et al. WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy. Mol Cell, 2022, 82(10): 1850-1864.
- 14. Chan EH, Nousiainen M, Chalamalasetty RB, et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene, 2005, 24(12): 2076-2086.
- 15. Dhanaraman T, Singh S, Killoran RC, et al. RASSF effectors couple diverse RAS subfamily GTPases to the Hippo pathway. Sci Signal, 2020, 13(653): eabb4778.
- 16. Delgado ILS, Carmona B, Nolasco S, et al. MOB: pivotal conserved proteins in cytokinesis, cell architecture and tissue homeostasis. Biology (Basel), 2020, 9(12): 413.
- 17. Meng Z, Moroishi T, Mottier-Pavie V, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun, 2015, 6: 8357.
- 18. Li FL, Fu V, Liu G, et al. Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides. Nat Chem Biol, 2022, 18(10): 1076-1086.
- 19. Hao X, Zhang Y, Shi X, et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3ζ. J Exp Clin Cancer Res, 2022, 41(1): 281.
- 20. Zhao B, Li L, Tumaneng K, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF (β-TRCP). Genes Dev, 2010, 24(1): 72-85.
- 21. Liu CY, Zha ZY, Zhou X, et al. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF β-TrCP E3 ligase. J Biol Chem, 2010, 285(48): 37159-37169.
- 22. Liu X, Yang N, Figel SA, et al. PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene, 2013, 32(10): 1266-1273.
- 23. Oka T, Remue E, Meerschaert K, et al. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J, 2010, 432(3): 461-472.
- 24. Feng X, Degese MS, Iglesias-Bartolome R, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell, 2014, 25(6): 831-845.
- 25. Zhai L, Yang X, Dong J, et al. O-GlcNAcylation mediates endometrial cancer progression by regulating the Hippo-YAP pathway. Int J Oncol, 2023, 63(2): 90.
- 26. Kim E, Kang JG, Kang MJ, et al. O-GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity. Proc Natl Acad Sci USA, 2020, 117(25): 14259-14269.
- 27. Yang S, Xu W, Liu C, et al. LATS1 K751 acetylation blocks activation of Hippo signalling and switches LATS1 from a tumor suppressor to an oncoprotein. Sci China Life Sci, 2022, 65(1): 129-141.
- 28. Tang J, Tian Z, Liao X, et al. SOX13/TRIM11/YAP axis promotes the proliferation, migration and chemoresistance of anaplastic thyroid cancer. Int J Biol Sci, 2021, 17(2): 417-429.
- 29. Wang DY, Wu YN, Huang JQ, et al. Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance. Chin J Cancer, 2016, 35: 47.
- 30. Huo X, Zhang Q, Liu AM, et al. Overexpression of Yes-associated protein confers doxorubicin resistance in hepatocellullar carcinoma. Oncol Rep, 2013, 29(2): 840-846.
- 31. Zhang H, Yu QL, Meng L, et al. TAZ-regulated expression of IL-8 is involved in chemoresistance of hepatocellular carcinoma cells. Arch Biochem Biophys, 2020, 693: 108571.
- 32. Tao Y, Shan L, Xu X, et al. Huaier augmented the chemo-therapeutic sensitivity of oxaliplatin via downregulation of YAP in hepatocellular carcinoma. J Cancer, 2018, 9(21): 3962-3970.
- 33. Dai XY, Zhuang LH, Wang DD, et al. Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells. Oncotarget, 2016, 7(6): 6933-6947.
- 34. Wu Q, Guo J, Liu Y, et al. YAP drives fate conversion and chemoresistance of small cell lung cancer. Sci Adv, 2021, 7(40): eabg1850.
- 35. Xiao L, Shi XY, Zhang Y, et al. YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. Onco Targets Ther, 2016, 9: 1105-1114.
- 36. Li C, Wang Q, Luo Y, et al. TAZ regulates the cisplatin resistance of epithelial ovarian cancer cells via the ANGPTL4/SOX2 axis. Anal Cell Pathol (Amst), 2022, 2022: 5632164.
- 37. Grattarola M, Cucci MA, Roetto A, et al. Post-translational down-regulation of Nrf2 and YAP proteins, by targeting deubiquitinases, reduces growth and chemoresistance in pancreatic cancer cells. Free Radic Biol Med, 2021, 174: 202-210.
- 38. He Z, Chen D, Wu J, et al. Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages. Arch Biochem Biophys, 2021, 702: 108838.
- 39. Gujral TS, Kirschner MW. Hippo pathway mediates resistance to cytotoxic drugs. Proc Natl Acad Sci USA, 2017, 114(18): E3729-E3738.
- 40. Mosca L, Ilari A, Fazi F, et al. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updat, 2021, 54: 100742.
- 41. Lai D, Ho KC, Hao Y, et al. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res, 2011, 71(7): 2728-2738.
- 42. Ma J, Fan Z, Tang Q, et al. Aspirin attenuates YAP and β-catenin expression by promoting β-TrCP to overcome docetaxel and vinorelbine resistance in triple-negative breast cancer. Cell Death Dis, 2020, 11(7): 530.
- 43. Wang XW, Zhao R, Yang ZY, et al. YAP inhibitor verteporfin suppresses tumor angiogenesis and overcomes chemoresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol, 2023, 149(10): 7703-7716.
- 44. Xia Y, Zhang YL, Yu C, et al. YAP/TEAD co-activator regulated pluripotency and chemoresistance in ovarian cancer initiated cells. PLoS One, 2014, 9(11): e109575.
- 45. Pattschull G, Walz S, Gründl M, et al. The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes. Cell Rep, 2019, 27(12): 3533-3546.
- 46. Yang S, Zhang L, Liu M, et al. CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res, 2013, 73(22): 6722-6733.
- 47. El-Sahli S, Hua K, Sulaiman A, et al. A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death Dis, 2021, 12(1): 8.
- 48. Chang L, Ruiz P, Ito T, et al. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell, 2021, 39(4): 466-479.
- 49. Ullah R, Yin Q, Snell AH, et al. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol, 2022, 85: 123-154.
- 50. Kim MH, Kim J, Hong H, et al. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J, 2016, 35(5): 462-478.
- 51. Misek SA, Newbury PA, Chekalin E, et al. Ibrutinib blocks YAP1 activation and reverses BRAF inhibitor resistance in melanoma cells. Mol Pharmacol, 2022, 101(1): 1-12.
- 52. Kim MH, Kim CG, Kim SK, et al. YAP-induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma. Cancer Immunol Res, 2018, 6(3): 255-266.
- 53. Garcia-Rendueles MER, Krishnamoorthy G, Saqcena M, et al. Yap governs a lineage-specific neuregulin1 pathway-driven adaptive resistance to RAF kinase inhibitors. Mol Cancer, 2022, 21(1): 213. doi: 10.1186/s12943-022-01676-9.
- 54. Schultz DF, Billadeau DD, Jois SD. EGFR trafficking: effect of dimerization, dynamics, and mutation. Front Oncol, 2023, 13: 1258371. doi: 10.3389/fonc.2023.1258371.
- 55. Tian X, Gu T, Lee MH, et al. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer, 2022, 1877(1): 188645. doi: 10.1016/j.bbcan.2021.188645.
- 56. Nilsson MB, Sun H, Robichaux J, et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med, 2020, 12(559): eaaz4589. doi: 10.1126/scitranslmed.aaz4589.
- 57. Ghiso E, Migliore C, Ciciriello V, et al. YAP-dependent AXL overexpression mediates resistance to EGFR inhibitors in NSCLC. Neoplasia, 2017, 19(12): 1012-1021.
- 58. Park HS, Lee DH, Kang DH, et al. Targeting YAP-p62 signaling axis suppresses the EGFR-TKI-resistant lung adenocarcinoma. Cancer Med, 2021, 10(4): 1405-1417.
- 59. Yu W, Zhang C, Wang Y, et al. YAP 5-methylcytosine modification increases its mRNA stability and promotes the transcription of exosome secretion-related genes in lung adenocarcinoma. Cancer Gene Ther, 2023, 30(1): 149-162.
- 60. González-Alonso P, Zazo S, Martín-Aparicio E, et al. The Hippo pathway transducers YAP1/TEAD induce acquired resistance to trastuzumab in HER2-positive breast cancer. Cancers (Basel), 2020, 12(5): 1108. doi: 10.3390/cancers12051108.
- 61. Coggins GE, Farrel A, Rathi KS, et al. YAP1 mediates resistance to MEK1/2 inhibition in neuroblastomas with hyperactivated RAS signaling. Cancer Res, 2019, 79(24): 6204-6214.
- 62. Rao G, Kim IK, Conforti F, et al. Dasatinib sensitises KRAS-mutant cancer cells to mitogen-activated protein kinase kinase inhibitor via inhibition of TAZ activity. Eur J Cancer, 2018, 99: 37-48.
- 63. Oliveira G, Wu CJ. Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer, 2023, 23(5): 295-316.
- 64. Liu X, Yang L, Tan X. PD-1/PD-L1 pathway: a double-edged sword in periodontitis. Biomed Pharmacother, 2023, 159: 114215.
- 65. Lee BS, Park DI, Lee DH, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun, 2017, 491(2): 493-499.
- 66. Yu M, Peng Z, Qin M, et al. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell, 2021, 81(6): 1216-1230.
- 67. Janse van Rensburg HJ, Azad T, Ling M, et al. The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res, 2018, 78(6): 1457-1470.
- 68. Ni X, Tao J, Barbi J, et al. YAP is essential for treg-mediated suppression of antitumor immunity. Cancer Discov, 2018, 8(8): 1026-1043.
- 69. Hao L, Guo Y, Peng Q, et al. Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in hepatocellular carcinoma. Phytomedicine, 2022, 96: 153913.
- 70. Paul S, Das K, Ghosh A, et al. Coagulation factor Ⅶa enhances programmed death-ligand 1 expression and its stability in breast cancer cells to promote breast cancer immune evasion. J Thromb Haemost, 2023, 21(12): 3522-3538.
- 71. Alì G, Poma AM, Di Stefano I, et al. Different pathological response and histological features following neoadjuvant chemotherapy or chemo-immunotherapy in resected non-small cell lung cancer. Front Oncol, 2023, 13: 1115156.
- 72. Liu-Chittenden Y, Huang B, Shim JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev, 2012, 26(12): 1300-1305.
- 73. Huggett MT, Jermyn M, Gillams A, et al. Phase Ⅰ/Ⅱ study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer, 2014, 110(7): 1698-1704.
-
Previous Article
Reverse-puncture anastomosis in minimally invasive Ivor-Lewis esophagectomy for lower esophageal carcinoma: A single-center retrospective study -
Next Article
Clinical efficacy of different surgical approaches in the treatment of Siewert type Ⅱ adenocarcinoma of esophagogastric junction: A retrospective cohort study