1. |
Vranic S, Gatalica Z. An update on the molecular and clinical characteristics of apocrine carcinoma of the breast. Clin Breast Cancer, 2022, 22(4): e576-e585.
|
2. |
Rechsteiner A, Dietrich D, Varga Z. Prognostic relevance of mixed histological subtypes in invasive breast carcinoma: a retrospective analysis. J Cancer Res Clin Oncol, 2023, 149(8): 4967-4978.
|
3. |
Ismail S, Kherbek H, Skef J, et al. Triple-negative apocrine carcinoma as a rare cause of a breast lump in a Syrian female: a case report and review of the literature. BMC Womens Health, 2021, 21(1): 396.
|
4. |
Xu JX, Qin SL, Wei HW, et al. Prognostic factors and an innovative nomogram model for patients with hepatocellular carcinoma treated with postoperative adjuvant transarterial chemoem-bolization. Ann Med, 2023, 55(1): 2199219.
|
5. |
Karush JM, Alex G, Geissen N, et al. Predicting non-home discharge after lung surgery: analysis of the general thoracic surgery database. Ann Thorac Surg, 2023, 115(3): 687-692.
|
6. |
Huang X, Xu X, Xu A, et al. Exploring the most appropriate lymph node staging system for node-positive breast cancer patients and constructing corresponding survival nomograms. J Cancer Res Clin Oncol, 2023, 149(16): 14721-14730.
|
7. |
Fei F, Zhang K, Siegal GP, et al. A simplified breast cancer prognostic score: comparison with the AJCC clinical prognostic staging system. Mod Pathol, 2021, 34(12): 2141-2147.
|
8. |
Lee S, Bennett AV, Zhou X, et al. Real-world treatment patterns and outcomes for patients with advanced melanoma treated with immunotherapy or targeted therapy. Pharmacoepidemiol Drug Saf, 2023, 32(9): 988-1000.
|
9. |
Ogłuszka M, Orzechowska M, Jędroszka D, et al. Evaluate cutpoints: adaptable continuous data distribution system for determining survival in Kaplan-Meier estimator. Comput Methods Programs Biomed, 2019, 177: 133-139.
|
10. |
Hu T, Liu Y, Wu J, et al. Triple-negative apocrine breast carcinoma has better prognosis despite poor response to neoadjuvant chemotherapy. J Clin Med, 2022, 11(6): 1607.
|
11. |
Wang C, Xu Y, Lin Y, et al. Comparison of CTS5 risk model and 21-gene recurrence score assay in large-scale breast cancer population and combination of CTS5 and recurrence score to develop a novel nomogram for prognosis prediction. Beast, 2022, 63: 61-70..Wang C, Xu Y, Lin Y, et al. Comparison of CTS5 risk model and 21-gene recurrence score assay in large-scale breast cancer population and combination of CTS5 and recurrence score to develop a novel nomogram for prognosis prediction. Beast, 2022, 63: 61-70.
|
12. |
Yang K, Chen M, Wang Y, et al. Development of a predictive risk stratification tool to identify the population over age 45 at risk for new-onset stroke within 7 years. Front Aging Neurosci, 2023, 15: 1101867.
|
13. |
董晓培, 史业辉. T1N0M0乳腺癌的预后及系统辅助治疗. 肿瘤, 2021, 41(11): 781-791.
|
14. |
王维, 金宗睿, 吴国林, 等. 预测大肝癌患者预后的列线图: 一项基于SEER数据库的研究. 中国普外基础与临床杂志, 2021, 28(8): 1016-1024.
|
15. |
Clift AK, Dodwell D, Lord S, et al. Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study. BMJ, 2023 May 10: 381: e073800.
|
16. |
Larouzee E, Allegre L, Boudy AS, et al. Predicting the likelihood of recurrence of pregnancy-associated breast cancer: nomogram based on analysis of the French cancer network: Cancer Associé à La Grossesse. J Gynecol Obstet Hum Reprod, 2021, 50(3): 101766.
|
17. |
Nater A, Tetreault LA, Kopjar B, et al. Predictive factors of survival in a surgical series of metastatic epidural spinal cord compression and complete external validation of 8 multivariate models of survival in a prospective North American multicenter study. Cancer, 2018, 124(17): 3536-3550.
|
18. |
唐豪佑, 唐云辉, 贺鑫, 等. 基于AJCC TNM分期建立中晚期甲状腺髓样癌术后生存的列线图模型: SEER数据库分析. 中国普外基础与临床杂志, 2023, 30(8): 944-950.
|
19. |
Tran TXM, Jung SY, Lee EG, et al. Long-term trajectory of postoperative health-related quality of life in young breast cancer patients: a 15-year follow-up study. J Cancer Surviv, 2023, 17(5): 1416-1426.
|
20. |
Hatzipanagiotou ME, Pigerl M, Gerken M, et al. Does timing of neoadjuvant chemotherapy influence the prognosis in patients with early triple negative breast cancer?. J Cancer Res Clin Oncol, 2023, 149(13): 11941-11950.
|
21. |
Quist J, Taylor L, Staaf J, et al. Random forest modelling of high-dimensional mixed-type data for breast cancer classification. Cancers (Basel), 2021, 13(5): 991.
|