1. |
Garg PK, Singh VP. Organ failure due to systemic injury in acute pancreatitis. Gastroenterology, 2019, 156(7): 2008-2023.
|
2. |
Boxhoorn L, Voermans RP, Bouwense SA, et al. Acute pancreatitis. Lancet, 2020, 396(10252): 726-734.
|
3. |
Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci, 2010 , 1207 Suppl 1: E103-E111.
|
4. |
van Dijk SM, Hallensleben NDL, van Santvoort HC, et al. Acute pancreatitis: recent advances through randomised trials. Gut, 2017, 66(11): 2024-2032.
|
5. |
Li XY, He C, Zhu Y, et al. Role of gut microbiota on intestinal barrier function in acute pancreatitis. World J Gastroenterol, 2020, 26(18): 2187-2193.
|
6. |
Windsor JA, Trevaskis NL, Phillips AJ. The gut-lymph model gives new treatment strategies for organ failure. JAMA Surg, 2022, 157(6): 540-541.
|
7. |
Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol, 2017, 18(6): 612-621.
|
8. |
Chen K, Kolls JK. Interluekin-17A (IL17A). Gene, 2017, 614: 8-14.
|
9. |
Huangfu L, Li R, Huang Y, et al. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther, 2023, 8(1): 402. doi: 10.1038/s41392-023-01620-3.
|
10. |
Flierl MA, Rittirsch D, Gao H, et al. Adverse functions of IL-17A in experimental sepsis. FASEB J, 2008, 22(7): 2198-2205.
|
11. |
Li G, Chen H, Liu L, et al. Role of interleukin-17 in acute pancreatitis. Front Immunol, 2021, 12: 674803. doi: 10.3389/fimmu.2021.674803.
|
12. |
Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol, 2016, 16(5): 295-309.
|
13. |
Dolff S, Witzke O, Wilde B. Th17 cells in renal inflammation and autoimmunity. Autoimmun Rev, 2019, 18(2): 129-136.
|
14. |
Zhang Z, Liu Q, Zang H, et al. Oxymatrine protects against l-arginine-induced acute pancreatitis and intestine injury involving Th1/Th17 cytokines and MAPK/NF-κB signalling. Pharm Biol, 2019, 57(1): 595-603.
|
15. |
Li X, Ye C, Mulati M, et al. Ellipticine blocks synergistic effects of IL-17A and TNF-α in epithelial cells and alleviates severe acute pancreatitis-associated acute lung injury. Biochem Pharmacol, 2020, 177: 113992.
|
16. |
Yang X, Yao L, Fu X, et al. Experimental acute pancreatitis models: history, current status, and role in translational research. Front Physiol, 2020, 11: 614591. doi: 10.3389/fphys.2020.614591.
|
17. |
Huang W, Cane MC, Mukherjee R, et al. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1, 4, 5-trisphosphate receptor-mediated Ca2+ release. Gut, 2017, 66(2): 301-313.
|
18. |
Peery AF, Crockett SD, Murphy CC, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology, 2019, 156(1): 254-272. e11.
|
19. |
Wu LM, Sankaran SJ, Plank LD, et al. Meta-analysis of gut barrier dysfunction in patients with acute pancreatitis. Br J Surg, 2014, 101(13): 1644-1656.
|
20. |
Maatman TK, Nicolas ME, Roch AM, et al. Colon involvement in necrotizing pancreatitis: incidence, risk factors, and outcomes. Ann Surg, 2022, 275(3): 568-575.
|
21. |
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol, 2009, 9(11): 799-809.
|
22. |
Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol, 2017, 11(9): 821-834.
|
23. |
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med, 2018, 50(8): 1-9.
|
24. |
Huang Z, Wu H, Fan J, et al. Colonic mucin-2 attenuates acute necrotizing pancreatitis in rats by modulating intestinal homeostasis. FASEB J, 2023, 37(7): e22994. doi: 10.1096/fj.202201998R.
|
25. |
Nagao-Kitamoto H, Leslie JL, Kitamoto S, et al. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat Med, 2020, 26(4): 608-617.
|
26. |
Kawano Y, Edwards M, Huang Y, et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell, 2022, 185(19): 3501-3519. e20.
|
27. |
Singh AK, Kumar R, Yin J, et al. RORγt-Raftlin1 complex regulates the pathogenicity of Th17 cells and colonic inflammation. Nat Commun, 2023, 14(1): 4972. doi: 10.1038/s41467-023-40622-1.
|
28. |
Kinugasa T, Sakaguchi T, Gu X, et al. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology, 2000, 118(6): 1001-1011.
|
29. |
Monin L, Gaffen SL. Interleukin 17 family cytokines: signaling mechanisms, biological activities, and therapeutic implications. Cold Spring Harb Perspect Biol, 2018, 10(4): a028522. doi: 10.1101/cshperspect.a028522.
|
30. |
Vlachos S, Tsaroucha AK, Konstantoudakis G, et al. Serum profiles of M30, M65 and interleukin-17 compared with C-reactive protein in patients with mild and severe acute pancreatitis. J Hepatobiliary Pancreat Sci, 2014, 21(12): 911-918.
|
31. |
Dai SR, Li Z, Zhang JB. Serum interleukin 17 as an early prognostic biomarker of severe acute pancreatitis receiving continuous blood purification. Int J Artif Organs, 2015, 38(4): 192-198.
|
32. |
Li G, Liu L, Lu T, et al. Gut microbiota aggravates neutrophil extracellular traps-induced pancreatic injury in hypertriglyceridemic pancreatitis. Nat Commun, 2023, 14(1): 6179. doi: 10.1038/s41467-023-41950-y.
|