- 1. Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225200, P. R. China;
Acute pancreatitis (AP) is a common clinical emergency of the abdomen with increasing incidence and lack of effective treatment. Traditional Chinese medicine, as a treasure of the Chinese people, has been used in the treatment of AP for decades with favorable therapeutic effects. Currently, clinical trials and experimental studies have shown that traditional Chinese medicine has the effects of inhibiting pancreatic enzyme activity, anti-inflammation, promoting gastrointestinal dynamics, as well as delaying the progress of AP, improving clinical symptoms, reducing related complications, and reducing the mortality rate. Therefore, traditional Chinese medicine has considerable clinic value in treating AP. Based on the related research progress and clinical practice of our team, the authors summarized the targets and mechanism of traditional Chinese medicine in treating AP.
Citation: CAO Fei, CHEN Weiwei. Target and mechanism of traditional Chinese medicine in acute pancreatitis. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(2): 146-154. doi: 10.7507/1007-9424.202312036 Copy
1. | Forsmark CE, Vege SS, Wilcox CM. Acute pancreatitis. N Engl J Med, 2016, 375(20): 1972-1981. |
2. | Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut, 2013, 62(1): 102-111. |
3. | Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 479-496. |
4. | Saluja A, Dudeja V, Dawra R, et al. Early intra-acinar events in pathogenesis of pancreatitis. Gastroenterology, 2019, 156(7): 1979-1993. |
5. | Habtezion A, Gukovskaya AS, Pandol SJ. Acute pancreatitis: a multifaceted set of organelle and cellular interactions. Gastroenterology, 2019, 156(7): 1941-1950. |
6. | Szatmary P, Grammatikopoulos T, Cai W, et al. Acute pancreatitis: diagnosis and treatment. Drugs, 2022, 82(12): 1251-1276. |
7. | Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: a review. JAMA, 2021, 325(4): 382-390. |
8. | Yang C, Wang T, Chen J, et al. Traditional Chinese medicine formulas alleviate acute pancreatitis: pharmacological activities and mechanisms. Pancreas, 2021, 50(10): 1348-1356. |
9. | Xiang H, Zhang Q, Qi B, et al. Chinese herbal medicines attenuate acute pancreatitis: pharmacological activities and mechanisms. Front Pharmacol, 2017, 8: 216. doi: 10.3389/fphar.2017.00216. |
10. | 李君秋, 肖铁刚, 曹红燕, 等. 大承气汤治疗急性胰腺炎的临床疗效观察与分析. 中华危重病急救医学, 2022, 34(1): 91-94. |
11. | Lin J, Han C, Dai N, et al. Effectiveness of Chengqi-series decoctions in treating severe acute pancreatitis: a systematic review and meta-analysis. Phytomedicine, 2023, 113: 154727. doi: 10.1016/j.phymed.2023.154727. |
12. | 李君秋, 戴彦成, 曹红燕, 等. 大承气汤能够通过调节肠道微生物群抑制轻症急性胰腺炎患者炎症反应并促进胃肠功能恢复. 中华危重病急救医学, 2023, 35(2): 170-176. |
13. | Wan MH, Li J, Huang W, et al. Modified Da-Cheng-Qi Decoction reduces intra-abdominal hypertension in severe acute pancreatitis: a pilot study. Chin Med J (Engl), 2012, 125(11): 1941-1944. |
14. | 王忠朝, 薛平, 黄宗文, 等. 早期应用柴芩承气汤治疗重症急性胰腺炎并发急性呼吸窘迫综合征的临床观察. 中国中西医结合杂志, 2009, 29(4): 322-324. |
15. | Guo J, Xue P, Yang XN, et al. The effect of Chaiqin Chengqi Decoction () on modulating serum matrix metalloproteinase 9 in patients with severe acute pancreatitis. Chin J Integr Med, 2013, 19(12): 913-917. |
16. | 薛平, 黄宗文, 郭佳, 等. 早期应用柴芩承气汤治疗胆源性重症急性胰腺炎的临床研究. 中西医结合学报, 2005, 3(4): 263-265. |
17. | Wang L, Li Y, Ma Q, et al. Chaiqin Chengqi Decoction decreases IL-6 levels in patients with acute pancreatitis. J Zhejiang Univ Sci B, 2011, 12(12): 1034-1040. |
18. | Chen W, Yang X, Huang L, et al. Qing-Yi decoction in participants with severe acute pancreatitis: a randomized controlled trial. Chin Med, 2015, 10: 11. doi: 10.1186/s13020-015-0039-8. |
19. | 杨东鹰, 段绍斌, 居来提·艾力. 等清胰汤对重症急性胰腺炎患者的疗效及血中肿瘤坏死因子-α和白细胞介素-6、8的影响. 中国中西医结合杂志, 2009, 29(12): 1122-1124. |
20. | 张蓝天, 张圆, 曹迎亚, 等. 电针刺联合清胰陷胸汤治疗重症急性胰腺炎所致急性呼吸窘迫综合征的临床观察. 中华危重病急救医学, 2022, 34(12): 1296-1300. |
21. | Wang G, Shang D, Zhang G, et al. Effects of QingYi decoction on inflammatory markers in patients with acute pancreatitis: a meta-analysis. Phytomedicine, 2022, 95: 153738. doi: 10.1016/j.phymed.2021.153738. |
22. | Xiao X, Wu X, Fu Q, et al. Efficacy and safety of Dachaihu Decoction for acute pancreatitis: protocol for a systematic review and meta-analysis. PLoS One, 2023, 18(5): e0285661. doi: 10.1371/journal.pone.0285661. |
23. | 路小光, 战丽彬, 康新, 等. 大黄附子汤佐治重症急性胰腺炎患者的临床研究—附206例患者的多中心临床疗效观察. 中国危重病急救医学, 2010, 22(12): 723-728. |
24. | 翁文辉. 中药大黄在重症急性胰腺炎治疗中的疗效观察. 中国现代药物应用, 2020, 14(11): 194-195. |
25. | Chen X, Yang K, Jing G, et al. Meta-analysis of efficacy of rhubarb combined with early enteral nutrition for the treatment of severe acute pancreatitis. JPEN J Parenter Enteral Nutr, 2020, 44(6): 1066-1078. |
26. | Hu J, Li P, Zhang T. Rhubarb combined with trypsin inhibitor for severe acute pancreatitis: a systematic review and meta-analysis. Phytother Res, 2018, 32(8): 1450-1458. |
27. | 王志刚, 王洪波. 芒硝外敷在改善SAP患者症状及指标中的作用. 肝胆外科杂志, 2020, 28(5): 372-374. |
28. | 何明珠, 程亮, 钟婷, 等. 芒硝外敷联合生长抑素治疗急性胰腺炎临床观察. 实用中医药杂志, 2022, 38(10): 1696-1697. |
29. | 李红丽. 清胰承气汤联合芒硝外敷治疗急性胰腺炎临床疗效观察. 亚太传统医药, 2022, 18(3): 72-75. |
30. | 张继盛, 刘兵, 王理富. 丹参注射液联合泮托拉唑钠治疗急性胰腺炎临床研究. 新中医, 2022, 54(17): 97-100. |
31. | Qiu Y, Li YY, Li SG, et al. Effect of Qingyitang on activity of intracellular Ca2+-Mg2+-ATPase in rats with acute pancreatitis. World J Gastroenterol, 2004, 10(1): 100-104. |
32. | 郭佳, 张海燕, 金涛, 等. 柴芩承气汤对急性胰腺炎小鼠血清胆囊收缩素-8水平及胰腺腺泡钙超载的影响. 四川大学学报(医学版), 2011, 42(5): 704-706. |
33. | 薛平, 邓力珲, 张肇达, 等. 柴芩承气汤减轻急性胰腺炎大鼠胰腺钙超载的机制研究. 中西医结合学报, 2008, 6(10): 1054-1058. |
34. | Wu L, Cai B, Liu X, et al. Emodin attenuates calcium overload and endoplasmic reticulum stress in AR42J rat pancreatic acinar cells. Mol Med Rep, 2014, 9(1): 267-272. |
35. | Yang X, Yao L, Yuan M, et al. Transcriptomics and network pharmacology reveal the protective effect of Chaiqin Chengqi Decoction on obesity-related alcohol-induced acute pancreatitis via oxidative stress and PI3K/Akt signaling pathway. Front Pharmacol, 2022, 13: 896523. doi: 10.3389/fphar.2022.896523. |
36. | Chen W, Yuan C, Lu Y, et al. Tanshinone ⅡA protects against acute pancreatitis in mice by inhibiting oxidative stress via the Nrf2/ROS pathway. Oxid Med Cell Longev, 2020, 2020: 5390482. |
37. | Xia S, Ni Y, Zhou Q, et al. Emodin attenuates severe acute pancreatitis via antioxidant and anti-inflammatory activity. Inflammation, 2019, 42(6): 2129-2138. |
38. | Özbeyli D, Gürler EB, Buzcu H, et al. Astaxanthin alleviates oxidative damage in acute pancreatitis via direct antioxidant mechanisms. Turk J Gastroenterol, 2020, 31(10): 706-712. |
39. | Liu X, Zhu Q, Zhang M, et al. Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev, 2018, 2018: 7161592. |
40. | Shan Y, Li J, Zhu A, et al. Ginsenoside Rg3 ameliorates acute pancreatitis by activating the NRF2/HO-1-mediated ferroptosis pathway. Int J Mol Med, 2022, 50(1): 89. doi: 10.3892/ijmm.2022.5144. |
41. | Siriviriyakul P, Chingchit T, Klaikeaw N, et al. Effects of curcumin on oxidative stress, inflammation and apoptosis in L-arginine induced acute pancreatitis in mice. Heliyon, 2019, 5(8): e02222. doi: 10.1016/j.heliyon.2019.e02222. |
42. | Yang X, Zhang X, Lin Z, et al. Chaiqin chengqi decoction alleviates severe acute pancreatitis associated acute kidney injury by inhibiting endoplasmic reticulum stress and subsequent apoptosis. Biomed Pharmacother, 2020, 125: 110024. doi: 10.1016/j.biopha.2020.110024. |
43. | Huang W, Zhang J, Jin W, et al. Piperine alleviates acute pancreatitis: a possible role for FAM134B and CCPG1 dependent ER-phagy. Phytomedicine, 2022, 105: 154361. doi: 10.1016/j.phymed.2022.154361. |
44. | Zhang C, Niu H, Wan C, et al. Drug D, a diosgenin derive, inhibits L-arginine-induced acute pancreatitis through meditating GSDMD in the endoplasmic reticulum via the TXNIP/HIF-1α pathway. Nutrients, 2022, 14(13): 2591. doi: 10.3390/nu14132591. |
45. | Wu L, Cai B, Zheng S, et al. Effect of emodin on endoplasmic reticulum stress in rats with severe acute pancreatitis. Inflammation, 2013, 36(5): 1020-1029. |
46. | Seo JY, Pandey RP, Lee J, et al. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. Phytomedicine, 2019, 55: 40-49. |
47. | Ren YF, Wang MZ, Bi JB, et al. Irisin attenuates intestinal injury, oxidative and endoplasmic reticulum stress in mice with L-arginine-induced acute pancreatitis. World J Gastroenterol, 2019, 25(45): 6653-6667. |
48. | Liu X, Yuan L, Tang Y, et al. Da-Cheng-Qi decoction improves severe acute pancreatitis-associated acute lung injury by interfering with intestinal lymphatic pathway and reducing HMGB1-induced inflammatory response in rats. Pharm Biol, 2023, 61(1): 144-154. |
49. | Wen Y, Han C, Liu T, et al. Chaiqin chengqi decoction alleviates severity of acute pancreatitis via inhibition of TLR4 and NLRP3 inflammasome: identification of bioactive ingredients via pharmacological sub-network analysis and experimental validation. Phytomedicine, 2020, 79: 153328. doi: 10.1016/j.phymed.2020.153328. |
50. | Wu K, Yao G, Shi X, et al. Asiaticoside ameliorates acinar cell necrosis in acute pancreatitis via toll-like receptor 4 pathway. Mol Immunol, 2021, 130: 122-132. |
51. | Pan X, Ye L, Ren Z, et al. Biochanin A ameliorates caerulein-induced acute pancreatitis and associated intestinal injury in mice by inhibiting TLR4 signaling. J Nutr Biochem, 2023, 113: 109229. doi: 10.1016/j.jnutbio.2022.109229. |
52. | Wang Z, Liu J, Li F, et al. Mechanisms of Qingyi decoction in severe acute pancreatitis-associated acute lung injury via gut microbiota: targeting the short-chain fatty acids-mediated AMPK/NF-κB/NLRP3 pathway. Microbiol Spectr, 2023, 11(4): e0366422. doi: 10.1128/spectrum.03664-22. |
53. | Zhao G, Zhuo YZ, Cui LH, et al. Modified Da-chai-hu Decoction regulates the expression of occludin and NF-κB to alleviate organ injury in severe acute pancreatitis rats. Chin J Nat Med, 2019, 17(5): 355-362. |
54. | Zhang P, Yin X, Wang X, et al. Paeonol protects against acute pancreatitis by Nrf2 and NF-κB pathways in mice. J Pharm Pharmacol, 2022, 74(11): 1618-1628. |
55. | Zhang X, Yang G, Chen Y, et al. Resveratrol pre-treatment alleviated caerulein-induced acute pancreatitis in high-fat diet-feeding mice via suppressing the NF-κB proinflammatory signaling and improving the gut microbiota. BMC Complement Med Ther, 2022, 22(1): 189. doi: 10.1186/s12906-022-03664-4. |
56. | Zhou Z, Choi JW, Shin JY, et al. Betulinic acid ameliorates the severity of acute pancreatitis via inhibition of the NF-κB signaling pathway in mice. Int J Mol Sci, 2021, 22(13): 6871. doi: 10.3390/ijms22136871. |
57. | Choi JW, Shin JY, Jo IJ, et al. 8α-Hydroxypinoresinol isolated from Nardostachys jatamansi ameliorates cerulein-induced acute pancreatitis through inhibition of NF-κB activation. Mol Immunol, 2019, 114: 620-628. |
58. | Wang J, Zou Y, Chang D, et al. Protective effect of Dachengqi decoction on the pancreatic microcirculatory system in severe acute pancreatitis by down-regulating HMGB-TLR-4-IL-23-IL-17A mediated neutrophil activation by targeting SIRT1. Gland Surg, 2021, 10(10): 3030-3044. |
59. | Yan X, Lin T, Zhu Q, et al. Naringenin protects against acute pancreatitis-associated intestinal injury by inhibiting NLRP3 inflammasome activation via AhR signaling. Front Pharmacol, 2023, 14: 1090261. doi: 10.3389/fphar.2023.1090261. |
60. | Yang X, Geng H, You L, et al. Rhein protects against severe acute pancreatitis in vitro and in vivo by regulating the JAK2/STAT3 pathway. Front Pharmacol, 2022, 13: 778221. doi: 10.3389/fphar.2022.778221. |
61. | Wei TF, Zhao L, Huang P, et al. Qing-Yi Decoction in the treatment of acute pancreatitis: an integrated approach based on chemical profile, network pharmacology, molecular docking and experimental evaluation. Front Pharmacol, 2021, 12: 590994. doi: 10.3389/fphar.2021.590994. |
62. | Sun W, Chen Y, Li H, et al. Material basis and molecular mechanisms of Dachengqi decoction in the treatment of acute pancreatitis based on network pharmacology. Biomed Pharmacother, 2020, 121: 109656. doi: 10.1016/j.biopha.2019.109656. |
63. | Zhan L, Pu J, Hu Y, et al. Uncovering the pharmacology of Xiaochaihu Decoction in the treatment of acute pancreatitis based on the network pharmacology. Biomed Res Int, 2021, 2021: 6621682. |
64. | Ma Q, Zhang M, Wang Z, et al. The beneficial effect of resveratrol on severe acute pancreatitis. Ann N Y Acad Sci, 2011, 1215: 96-102. |
65. | Bansod S, Godugu C. Nimbolide ameliorates pancreatic inflammation and apoptosis by modulating NF-κB/SIRT1 and apoptosis signaling in acute pancreatitis model. Int Immunopharmacol, 2021, 90: 107246. doi: 10.1016/j.intimp.2020.107246. |
66. | Zhang D, Li L, Li J, et al. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats. Biomed Pharmacother, 2022, 153: 113461. doi: 10.1016/j.biopha.2022.113461. |
67. | Xiao J, Huang K, Lin H, et al. Mogroside ⅡE inhibits digestive enzymes via suppression of interleukin 9/interleukin 9 receptor signalling in acute pancreatitis. Front Pharmacol, 2020, 11: 859. doi: 10.3389/fphar.2020.00859. |
68. | Yu X, Li C, Song H, et al. Emodin attenuates autophagy response to protect the pancreas from acute pancreatitis failure. Pancreas, 2018, 47(7): 892-897. |
69. | Cao F, Xiang J, Wang Y, et al. Chaiqin chengqi decoction alleviates acute pancreatitis by targeting gasdermin D-mediated pyroptosis. J Ethnopharmacol, 2024, 318(Pt A): 116920. |
70. | Wang X, Qian J, Meng Y, et al. Salidroside ameliorates severe acute pancreatitis-induced cell injury and pyroptosis by inactivating Akt/NF-κB and caspase-3/GSDME pathways. Heliyon, 2023, 9(2): e13225. doi: 10.1016/j.heliyon.2023.e13225. |
71. | Huang ZW, Tan P, Yi XK, et al. Sinapic acid alleviates acute pancreatitis in association with attenuation of inflammation, pyroptosis, and the AMPK/NF-[formula: see text]B signaling pathway. Am J Chin Med, 2022, 50(8): 2185-2197. |
72. | Maruyama Y, Inooka G, Li YX, et al. Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas. EMBO J, 1993, 12(8): 3017-3022. |
73. | Petersen OH, Gerasimenko JV, Gerasimenko OV, et al. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev, 2021, 101(4): 1691-1744. |
74. | Feng S, Wei Q, Hu Q, et al. Research progress on the relationship between acute pancreatitis and calcium overload in acinar cells. Dig Dis Sci, 2019, 64(1): 25-38. |
75. | Li J, Zhou R, Zhang J, et al. Calcium signaling of pancreatic acinar cells in the pathogenesis of pancreatitis. World J Gastroenterol, 2014, 20(43): 16146-16152. |
76. | Dabrowski A, Gabryelewicz A. Nitric oxide contributes to multiorgan oxidative stress in acute experimental pancreatitis. Scand J Gastroenterol, 1994, 29(10): 943-948. |
77. | Pădureanu V, Florescu DN, Pădureanu R, et al. Role of antioxidants and oxidative stress in the evolution of acute pancreatitis (Review). Exp Ther Med, 2022, 23(3): 197. doi: 10.3892/etm.2022.11120. |
78. | Frossard JL, Saluja A, Bhagat L, et al. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology, 1999, 116(3): 694-701. |
79. | Gu H, Werner J, Bergmann F, et al. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis. Cell Death Dis, 2013, 4(10): e816. doi: 10.1038/cddis.2013.354. |
80. | Gukovskaya AS, Gukovsky I, Zaninovic V, et al. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest, 1997, 100(7): 1853-1862. |
81. | Hoque R, Malik AF, Gorelick F, et al. Sterile inflammatory response in acute pancreatitis. Pancreas, 2012, 41(3): 353-357. |
82. | Ren W, Zhao L, Sun Y, et al. HMGB1 and Toll-like receptors: potential therapeutic targets in autoimmune diseases. Mol Med, 2023, 29(1): 117. doi: 10.1186/s10020-023-00717-3. |
83. | Sharif R, Dawra R, Wasiluk K, et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut, 2009, 58(6): 813-819. |
84. | Jakkampudi A, Jangala R, Reddy BR, et al. NF-κB in acute pancreatitis: mechanisms and therapeutic potential. Pancreatology, 2016, 16(4): 477-488. |
85. | Steinle AU, Weidenbach H, Wagner M, et al. NF-kappaB/Rel activation in cerulein pancreatitis. Gastroenterology, 1999, 116(2): 420-430. |
86. | Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J, 2021, 40(5): e106700. doi: 10.15252/embj.2020106700. |
87. | Bhatia M. Apoptosis of pancreatic acinar cells in acute pancreatitis: is it good or bad? J Cell Mol Med, 2004, 8(3): 402-409. |
88. | Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem, 2002, 277(37): 34287-34294. |
89. | Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology, 2018, 154(3): 689-703. |
90. | Hashimoto D, Ohmuraya M, Hirota M, et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol, 2008, 181(7): 1065-1072. |
91. | Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575): 660-665. |
- 1. Forsmark CE, Vege SS, Wilcox CM. Acute pancreatitis. N Engl J Med, 2016, 375(20): 1972-1981.
- 2. Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut, 2013, 62(1): 102-111.
- 3. Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 479-496.
- 4. Saluja A, Dudeja V, Dawra R, et al. Early intra-acinar events in pathogenesis of pancreatitis. Gastroenterology, 2019, 156(7): 1979-1993.
- 5. Habtezion A, Gukovskaya AS, Pandol SJ. Acute pancreatitis: a multifaceted set of organelle and cellular interactions. Gastroenterology, 2019, 156(7): 1941-1950.
- 6. Szatmary P, Grammatikopoulos T, Cai W, et al. Acute pancreatitis: diagnosis and treatment. Drugs, 2022, 82(12): 1251-1276.
- 7. Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: a review. JAMA, 2021, 325(4): 382-390.
- 8. Yang C, Wang T, Chen J, et al. Traditional Chinese medicine formulas alleviate acute pancreatitis: pharmacological activities and mechanisms. Pancreas, 2021, 50(10): 1348-1356.
- 9. Xiang H, Zhang Q, Qi B, et al. Chinese herbal medicines attenuate acute pancreatitis: pharmacological activities and mechanisms. Front Pharmacol, 2017, 8: 216. doi: 10.3389/fphar.2017.00216.
- 10. 李君秋, 肖铁刚, 曹红燕, 等. 大承气汤治疗急性胰腺炎的临床疗效观察与分析. 中华危重病急救医学, 2022, 34(1): 91-94.
- 11. Lin J, Han C, Dai N, et al. Effectiveness of Chengqi-series decoctions in treating severe acute pancreatitis: a systematic review and meta-analysis. Phytomedicine, 2023, 113: 154727. doi: 10.1016/j.phymed.2023.154727.
- 12. 李君秋, 戴彦成, 曹红燕, 等. 大承气汤能够通过调节肠道微生物群抑制轻症急性胰腺炎患者炎症反应并促进胃肠功能恢复. 中华危重病急救医学, 2023, 35(2): 170-176.
- 13. Wan MH, Li J, Huang W, et al. Modified Da-Cheng-Qi Decoction reduces intra-abdominal hypertension in severe acute pancreatitis: a pilot study. Chin Med J (Engl), 2012, 125(11): 1941-1944.
- 14. 王忠朝, 薛平, 黄宗文, 等. 早期应用柴芩承气汤治疗重症急性胰腺炎并发急性呼吸窘迫综合征的临床观察. 中国中西医结合杂志, 2009, 29(4): 322-324.
- 15. Guo J, Xue P, Yang XN, et al. The effect of Chaiqin Chengqi Decoction () on modulating serum matrix metalloproteinase 9 in patients with severe acute pancreatitis. Chin J Integr Med, 2013, 19(12): 913-917.
- 16. 薛平, 黄宗文, 郭佳, 等. 早期应用柴芩承气汤治疗胆源性重症急性胰腺炎的临床研究. 中西医结合学报, 2005, 3(4): 263-265.
- 17. Wang L, Li Y, Ma Q, et al. Chaiqin Chengqi Decoction decreases IL-6 levels in patients with acute pancreatitis. J Zhejiang Univ Sci B, 2011, 12(12): 1034-1040.
- 18. Chen W, Yang X, Huang L, et al. Qing-Yi decoction in participants with severe acute pancreatitis: a randomized controlled trial. Chin Med, 2015, 10: 11. doi: 10.1186/s13020-015-0039-8.
- 19. 杨东鹰, 段绍斌, 居来提·艾力. 等清胰汤对重症急性胰腺炎患者的疗效及血中肿瘤坏死因子-α和白细胞介素-6、8的影响. 中国中西医结合杂志, 2009, 29(12): 1122-1124.
- 20. 张蓝天, 张圆, 曹迎亚, 等. 电针刺联合清胰陷胸汤治疗重症急性胰腺炎所致急性呼吸窘迫综合征的临床观察. 中华危重病急救医学, 2022, 34(12): 1296-1300.
- 21. Wang G, Shang D, Zhang G, et al. Effects of QingYi decoction on inflammatory markers in patients with acute pancreatitis: a meta-analysis. Phytomedicine, 2022, 95: 153738. doi: 10.1016/j.phymed.2021.153738.
- 22. Xiao X, Wu X, Fu Q, et al. Efficacy and safety of Dachaihu Decoction for acute pancreatitis: protocol for a systematic review and meta-analysis. PLoS One, 2023, 18(5): e0285661. doi: 10.1371/journal.pone.0285661.
- 23. 路小光, 战丽彬, 康新, 等. 大黄附子汤佐治重症急性胰腺炎患者的临床研究—附206例患者的多中心临床疗效观察. 中国危重病急救医学, 2010, 22(12): 723-728.
- 24. 翁文辉. 中药大黄在重症急性胰腺炎治疗中的疗效观察. 中国现代药物应用, 2020, 14(11): 194-195.
- 25. Chen X, Yang K, Jing G, et al. Meta-analysis of efficacy of rhubarb combined with early enteral nutrition for the treatment of severe acute pancreatitis. JPEN J Parenter Enteral Nutr, 2020, 44(6): 1066-1078.
- 26. Hu J, Li P, Zhang T. Rhubarb combined with trypsin inhibitor for severe acute pancreatitis: a systematic review and meta-analysis. Phytother Res, 2018, 32(8): 1450-1458.
- 27. 王志刚, 王洪波. 芒硝外敷在改善SAP患者症状及指标中的作用. 肝胆外科杂志, 2020, 28(5): 372-374.
- 28. 何明珠, 程亮, 钟婷, 等. 芒硝外敷联合生长抑素治疗急性胰腺炎临床观察. 实用中医药杂志, 2022, 38(10): 1696-1697.
- 29. 李红丽. 清胰承气汤联合芒硝外敷治疗急性胰腺炎临床疗效观察. 亚太传统医药, 2022, 18(3): 72-75.
- 30. 张继盛, 刘兵, 王理富. 丹参注射液联合泮托拉唑钠治疗急性胰腺炎临床研究. 新中医, 2022, 54(17): 97-100.
- 31. Qiu Y, Li YY, Li SG, et al. Effect of Qingyitang on activity of intracellular Ca2+-Mg2+-ATPase in rats with acute pancreatitis. World J Gastroenterol, 2004, 10(1): 100-104.
- 32. 郭佳, 张海燕, 金涛, 等. 柴芩承气汤对急性胰腺炎小鼠血清胆囊收缩素-8水平及胰腺腺泡钙超载的影响. 四川大学学报(医学版), 2011, 42(5): 704-706.
- 33. 薛平, 邓力珲, 张肇达, 等. 柴芩承气汤减轻急性胰腺炎大鼠胰腺钙超载的机制研究. 中西医结合学报, 2008, 6(10): 1054-1058.
- 34. Wu L, Cai B, Liu X, et al. Emodin attenuates calcium overload and endoplasmic reticulum stress in AR42J rat pancreatic acinar cells. Mol Med Rep, 2014, 9(1): 267-272.
- 35. Yang X, Yao L, Yuan M, et al. Transcriptomics and network pharmacology reveal the protective effect of Chaiqin Chengqi Decoction on obesity-related alcohol-induced acute pancreatitis via oxidative stress and PI3K/Akt signaling pathway. Front Pharmacol, 2022, 13: 896523. doi: 10.3389/fphar.2022.896523.
- 36. Chen W, Yuan C, Lu Y, et al. Tanshinone ⅡA protects against acute pancreatitis in mice by inhibiting oxidative stress via the Nrf2/ROS pathway. Oxid Med Cell Longev, 2020, 2020: 5390482.
- 37. Xia S, Ni Y, Zhou Q, et al. Emodin attenuates severe acute pancreatitis via antioxidant and anti-inflammatory activity. Inflammation, 2019, 42(6): 2129-2138.
- 38. Özbeyli D, Gürler EB, Buzcu H, et al. Astaxanthin alleviates oxidative damage in acute pancreatitis via direct antioxidant mechanisms. Turk J Gastroenterol, 2020, 31(10): 706-712.
- 39. Liu X, Zhu Q, Zhang M, et al. Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev, 2018, 2018: 7161592.
- 40. Shan Y, Li J, Zhu A, et al. Ginsenoside Rg3 ameliorates acute pancreatitis by activating the NRF2/HO-1-mediated ferroptosis pathway. Int J Mol Med, 2022, 50(1): 89. doi: 10.3892/ijmm.2022.5144.
- 41. Siriviriyakul P, Chingchit T, Klaikeaw N, et al. Effects of curcumin on oxidative stress, inflammation and apoptosis in L-arginine induced acute pancreatitis in mice. Heliyon, 2019, 5(8): e02222. doi: 10.1016/j.heliyon.2019.e02222.
- 42. Yang X, Zhang X, Lin Z, et al. Chaiqin chengqi decoction alleviates severe acute pancreatitis associated acute kidney injury by inhibiting endoplasmic reticulum stress and subsequent apoptosis. Biomed Pharmacother, 2020, 125: 110024. doi: 10.1016/j.biopha.2020.110024.
- 43. Huang W, Zhang J, Jin W, et al. Piperine alleviates acute pancreatitis: a possible role for FAM134B and CCPG1 dependent ER-phagy. Phytomedicine, 2022, 105: 154361. doi: 10.1016/j.phymed.2022.154361.
- 44. Zhang C, Niu H, Wan C, et al. Drug D, a diosgenin derive, inhibits L-arginine-induced acute pancreatitis through meditating GSDMD in the endoplasmic reticulum via the TXNIP/HIF-1α pathway. Nutrients, 2022, 14(13): 2591. doi: 10.3390/nu14132591.
- 45. Wu L, Cai B, Zheng S, et al. Effect of emodin on endoplasmic reticulum stress in rats with severe acute pancreatitis. Inflammation, 2013, 36(5): 1020-1029.
- 46. Seo JY, Pandey RP, Lee J, et al. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. Phytomedicine, 2019, 55: 40-49.
- 47. Ren YF, Wang MZ, Bi JB, et al. Irisin attenuates intestinal injury, oxidative and endoplasmic reticulum stress in mice with L-arginine-induced acute pancreatitis. World J Gastroenterol, 2019, 25(45): 6653-6667.
- 48. Liu X, Yuan L, Tang Y, et al. Da-Cheng-Qi decoction improves severe acute pancreatitis-associated acute lung injury by interfering with intestinal lymphatic pathway and reducing HMGB1-induced inflammatory response in rats. Pharm Biol, 2023, 61(1): 144-154.
- 49. Wen Y, Han C, Liu T, et al. Chaiqin chengqi decoction alleviates severity of acute pancreatitis via inhibition of TLR4 and NLRP3 inflammasome: identification of bioactive ingredients via pharmacological sub-network analysis and experimental validation. Phytomedicine, 2020, 79: 153328. doi: 10.1016/j.phymed.2020.153328.
- 50. Wu K, Yao G, Shi X, et al. Asiaticoside ameliorates acinar cell necrosis in acute pancreatitis via toll-like receptor 4 pathway. Mol Immunol, 2021, 130: 122-132.
- 51. Pan X, Ye L, Ren Z, et al. Biochanin A ameliorates caerulein-induced acute pancreatitis and associated intestinal injury in mice by inhibiting TLR4 signaling. J Nutr Biochem, 2023, 113: 109229. doi: 10.1016/j.jnutbio.2022.109229.
- 52. Wang Z, Liu J, Li F, et al. Mechanisms of Qingyi decoction in severe acute pancreatitis-associated acute lung injury via gut microbiota: targeting the short-chain fatty acids-mediated AMPK/NF-κB/NLRP3 pathway. Microbiol Spectr, 2023, 11(4): e0366422. doi: 10.1128/spectrum.03664-22.
- 53. Zhao G, Zhuo YZ, Cui LH, et al. Modified Da-chai-hu Decoction regulates the expression of occludin and NF-κB to alleviate organ injury in severe acute pancreatitis rats. Chin J Nat Med, 2019, 17(5): 355-362.
- 54. Zhang P, Yin X, Wang X, et al. Paeonol protects against acute pancreatitis by Nrf2 and NF-κB pathways in mice. J Pharm Pharmacol, 2022, 74(11): 1618-1628.
- 55. Zhang X, Yang G, Chen Y, et al. Resveratrol pre-treatment alleviated caerulein-induced acute pancreatitis in high-fat diet-feeding mice via suppressing the NF-κB proinflammatory signaling and improving the gut microbiota. BMC Complement Med Ther, 2022, 22(1): 189. doi: 10.1186/s12906-022-03664-4.
- 56. Zhou Z, Choi JW, Shin JY, et al. Betulinic acid ameliorates the severity of acute pancreatitis via inhibition of the NF-κB signaling pathway in mice. Int J Mol Sci, 2021, 22(13): 6871. doi: 10.3390/ijms22136871.
- 57. Choi JW, Shin JY, Jo IJ, et al. 8α-Hydroxypinoresinol isolated from Nardostachys jatamansi ameliorates cerulein-induced acute pancreatitis through inhibition of NF-κB activation. Mol Immunol, 2019, 114: 620-628.
- 58. Wang J, Zou Y, Chang D, et al. Protective effect of Dachengqi decoction on the pancreatic microcirculatory system in severe acute pancreatitis by down-regulating HMGB-TLR-4-IL-23-IL-17A mediated neutrophil activation by targeting SIRT1. Gland Surg, 2021, 10(10): 3030-3044.
- 59. Yan X, Lin T, Zhu Q, et al. Naringenin protects against acute pancreatitis-associated intestinal injury by inhibiting NLRP3 inflammasome activation via AhR signaling. Front Pharmacol, 2023, 14: 1090261. doi: 10.3389/fphar.2023.1090261.
- 60. Yang X, Geng H, You L, et al. Rhein protects against severe acute pancreatitis in vitro and in vivo by regulating the JAK2/STAT3 pathway. Front Pharmacol, 2022, 13: 778221. doi: 10.3389/fphar.2022.778221.
- 61. Wei TF, Zhao L, Huang P, et al. Qing-Yi Decoction in the treatment of acute pancreatitis: an integrated approach based on chemical profile, network pharmacology, molecular docking and experimental evaluation. Front Pharmacol, 2021, 12: 590994. doi: 10.3389/fphar.2021.590994.
- 62. Sun W, Chen Y, Li H, et al. Material basis and molecular mechanisms of Dachengqi decoction in the treatment of acute pancreatitis based on network pharmacology. Biomed Pharmacother, 2020, 121: 109656. doi: 10.1016/j.biopha.2019.109656.
- 63. Zhan L, Pu J, Hu Y, et al. Uncovering the pharmacology of Xiaochaihu Decoction in the treatment of acute pancreatitis based on the network pharmacology. Biomed Res Int, 2021, 2021: 6621682.
- 64. Ma Q, Zhang M, Wang Z, et al. The beneficial effect of resveratrol on severe acute pancreatitis. Ann N Y Acad Sci, 2011, 1215: 96-102.
- 65. Bansod S, Godugu C. Nimbolide ameliorates pancreatic inflammation and apoptosis by modulating NF-κB/SIRT1 and apoptosis signaling in acute pancreatitis model. Int Immunopharmacol, 2021, 90: 107246. doi: 10.1016/j.intimp.2020.107246.
- 66. Zhang D, Li L, Li J, et al. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats. Biomed Pharmacother, 2022, 153: 113461. doi: 10.1016/j.biopha.2022.113461.
- 67. Xiao J, Huang K, Lin H, et al. Mogroside ⅡE inhibits digestive enzymes via suppression of interleukin 9/interleukin 9 receptor signalling in acute pancreatitis. Front Pharmacol, 2020, 11: 859. doi: 10.3389/fphar.2020.00859.
- 68. Yu X, Li C, Song H, et al. Emodin attenuates autophagy response to protect the pancreas from acute pancreatitis failure. Pancreas, 2018, 47(7): 892-897.
- 69. Cao F, Xiang J, Wang Y, et al. Chaiqin chengqi decoction alleviates acute pancreatitis by targeting gasdermin D-mediated pyroptosis. J Ethnopharmacol, 2024, 318(Pt A): 116920.
- 70. Wang X, Qian J, Meng Y, et al. Salidroside ameliorates severe acute pancreatitis-induced cell injury and pyroptosis by inactivating Akt/NF-κB and caspase-3/GSDME pathways. Heliyon, 2023, 9(2): e13225. doi: 10.1016/j.heliyon.2023.e13225.
- 71. Huang ZW, Tan P, Yi XK, et al. Sinapic acid alleviates acute pancreatitis in association with attenuation of inflammation, pyroptosis, and the AMPK/NF-[formula: see text]B signaling pathway. Am J Chin Med, 2022, 50(8): 2185-2197.
- 72. Maruyama Y, Inooka G, Li YX, et al. Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas. EMBO J, 1993, 12(8): 3017-3022.
- 73. Petersen OH, Gerasimenko JV, Gerasimenko OV, et al. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev, 2021, 101(4): 1691-1744.
- 74. Feng S, Wei Q, Hu Q, et al. Research progress on the relationship between acute pancreatitis and calcium overload in acinar cells. Dig Dis Sci, 2019, 64(1): 25-38.
- 75. Li J, Zhou R, Zhang J, et al. Calcium signaling of pancreatic acinar cells in the pathogenesis of pancreatitis. World J Gastroenterol, 2014, 20(43): 16146-16152.
- 76. Dabrowski A, Gabryelewicz A. Nitric oxide contributes to multiorgan oxidative stress in acute experimental pancreatitis. Scand J Gastroenterol, 1994, 29(10): 943-948.
- 77. Pădureanu V, Florescu DN, Pădureanu R, et al. Role of antioxidants and oxidative stress in the evolution of acute pancreatitis (Review). Exp Ther Med, 2022, 23(3): 197. doi: 10.3892/etm.2022.11120.
- 78. Frossard JL, Saluja A, Bhagat L, et al. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology, 1999, 116(3): 694-701.
- 79. Gu H, Werner J, Bergmann F, et al. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis. Cell Death Dis, 2013, 4(10): e816. doi: 10.1038/cddis.2013.354.
- 80. Gukovskaya AS, Gukovsky I, Zaninovic V, et al. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest, 1997, 100(7): 1853-1862.
- 81. Hoque R, Malik AF, Gorelick F, et al. Sterile inflammatory response in acute pancreatitis. Pancreas, 2012, 41(3): 353-357.
- 82. Ren W, Zhao L, Sun Y, et al. HMGB1 and Toll-like receptors: potential therapeutic targets in autoimmune diseases. Mol Med, 2023, 29(1): 117. doi: 10.1186/s10020-023-00717-3.
- 83. Sharif R, Dawra R, Wasiluk K, et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut, 2009, 58(6): 813-819.
- 84. Jakkampudi A, Jangala R, Reddy BR, et al. NF-κB in acute pancreatitis: mechanisms and therapeutic potential. Pancreatology, 2016, 16(4): 477-488.
- 85. Steinle AU, Weidenbach H, Wagner M, et al. NF-kappaB/Rel activation in cerulein pancreatitis. Gastroenterology, 1999, 116(2): 420-430.
- 86. Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J, 2021, 40(5): e106700. doi: 10.15252/embj.2020106700.
- 87. Bhatia M. Apoptosis of pancreatic acinar cells in acute pancreatitis: is it good or bad? J Cell Mol Med, 2004, 8(3): 402-409.
- 88. Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem, 2002, 277(37): 34287-34294.
- 89. Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology, 2018, 154(3): 689-703.
- 90. Hashimoto D, Ohmuraya M, Hirota M, et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol, 2008, 181(7): 1065-1072.
- 91. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575): 660-665.