- 1. The Second Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 630700, P. R. China;
- 2. Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China;
Citation: XIE Liang, GUO Hao, HE Hongyu, ZHOU Guojun, LENG Zhengwei, YAN Dehui, XU Mingqing. Research progress on matrix metalloproteinases regulating development of hepatocellular carcinoma and its mechanisms. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(5): 625-633. doi: 10.7507/1007-9424.202312052 Copy
1. | Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. |
2. | Zhang H, Zhang W, Jiang L, et al. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark Res, 2022, 10(1): 3. doi: 10.1186/s40364-021-00350-4. |
3. | Gupta H, Youn GS, Shin MJ, et al. Role of gut microbiota in hepatocarcinogenesis. Microorganisms, 2019, 7(5): 121. doi: 10.3390/microorganisms7050121. |
4. | Wong MC, Jiang JY, Goggins WB, et al. International incidence and mortality trends of liver cancer: a global profile. Sci Rep, 2017, 7: 45846. doi: 10.1038/srep45846. |
5. | Scheau C, Bădărău AI, Gherguş AE, et al. Minimal hepatic encephalopathy diagnosis by magnetic resonance spectroscopy. A case report. J Gastrointestin Liver Dis, 2013, 22(4): 455-459. |
6. | Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer, 2017, 16(1): 4. doi: 10.1186/s12943-016-0572-9. |
7. | Ge Y, Mu W, Ba Q, et al. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett, 2020, 477: 41-48. |
8. | Sia D, Villanueva A, Friedman SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology, 2017, 152(4): 745-761. |
9. | Carissimi F, Barbaglia MN, Salmi L, et al. Finding the seed of recurrence: hepatocellular carcinoma circulating tumor cells and their potential to drive the surgical treatment. World J Gastrointest Surg, 2021, 13(9): 967-978. |
10. | Debnath P, Huirem RS, Dutta P, et al. Epithelial-mesenchymal transition and its transcription factors. Biosci Rep, 2022, 42(1): BSR20211754. doi: 10.1042/BSR20211754. |
11. | Brînzea A, Nedelcu RI, Turcu G, et al. TIMPs expression in lentigo maligna÷lentigo maligna melanoma versus aged skin—a review of the literature and personal experience. Rom J Morphol Embryol. 2017, 58(3): 717-721. |
12. | Scheau C, Badarau IA, Costache R, et al. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol (Amst), 2019, 2019: 9423907. doi: 10.1155/2019/9423907. |
13. | Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci, 2017, 147: 1-73. |
14. | Smith BN, Bhowmick NA. Role of EMT in metastasis and therapy resistance. J Clin Med, 2016, 5(2): 17. doi: 10.3390/jcm5020017. |
15. | Brkic M, Balusu S, Libert C, et al. Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm, 2015, 2015: 620581. doi: 10.1155/2015/620581. |
16. | Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol, 2014, 15(12): 786-801. |
17. | Liu J, Khalil RA. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci, 2017, 148: 355-420. |
18. | Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol, 2007, 26(8): 587-596. |
19. | Stolow MA, Bauzon DD, Li J, et al. Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol Biol Cell, 1996, 7(10): 1471-1483. |
20. | Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem, 2016, 31(sup1): 177-183. |
21. | Duarte S, Baber J, Fujii T, et al. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol, 2015, 44-46: 147-156. |
22. | Yadav L, Puri N, Rastogi V, et al. Matrix metalloproteinases and cancer—roles in threat and therapy. Asian Pac J Cancer Prev, 2014, 15(3): 1085-1091. |
23. | Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol, 2008, 40(6-7): 1334-1347. |
24. | Zurac S, Neagu M, Constantin C, et al. Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett, 2016, 11(5): 3354-3360. |
25. | Lin H, Xu P, Huang M. Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments. Future Med Chem, 2022, 14(1): 35-51. |
26. | Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells, 2020, 9(5): 1313. doi: 10.3390/cells9051313. |
27. | Mannello F, Gazzanelli G. Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis, 2001, 6(6): 479-482. |
28. | Olivares-Urbano MA, Griñán-Lisón C, Zurita M, et al. Matrix metalloproteases and TIMPs as prognostic biomarkers in breast cancer patients treated with radiotherapy: a pilot study. J Cell Mol Med, 2020, 24(1): 139-148. |
29. | Dai L, Mugaanyi J, Cai X, et al. Comprehensive bioinformatic analysis of MMP1 in hepatocellular carcinoma and establishment of relevant prognostic model. Sci Rep, 2022, 12(1): 13639. doi: 10.1038/s41598-022-17954-x. |
30. | Yu CL, Yu YL, Yang SF, et al. Praeruptorin A reduces metastasis of human hepatocellular carcinoma cells by targeting ERK/MMP1 signaling pathway. Environ Toxicol, 2021, 36(4): 540-549. |
31. | Liu H, Lan T, Li H, et al. Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics, 2021, 11(3): 1396-1411. |
32. | Liu X, Yang L, Tu J, et al. microRNA-526b servers as a prognostic factor and exhibits tumor suppressive property by targeting Sirtuin 7 in hepatocellular carcinoma. Oncotarget, 2017, 8(50): 87737-87749. |
33. | 刘爱霞, 张浩, 孙杰, 等. GPS2对肝癌细胞系MHCC-97H增殖、迁移与侵袭的调控作用. 基础医学与临床, 2023, 43(12): 1784-1791. |
34. | 杨磊, 荣维淇, 肖汀, 等. 应用分泌/释放蛋白质组学鉴定HBV相关的肝细胞癌血浆标志物. 中国科学: 生命科学, 2013, 43(8): 663-671. |
35. | Attallah AM, Albannan MS, El-Deen MS, et al. Diagnostic role of collagen-Ⅲ and matrix metalloproteinase-1 for early detection of hepatocellular carcinoma. Br J Biomed Sci, 2020, 77(2): 58-63. |
36. | Wang B, Ding YM, Fan P, et al. Expression and significance of MMP2 and HIF-1α in hepatocellular carcinoma. Oncol Lett, 2014, 8(2): 539-546. |
37. | Schoedel KE, Tyner VZ, Kim TH, et al. HGF, MET, and matrix-related proteases in hepatocellular carcinoma, fibrolamellar variant, cirrhotic and normal liver. Mod Pathol, 2003, 16(1): 14-21. |
38. | Ayesha M, Majid A, Zhao D, et al. MiR-4521 plays a tumor repressive role in growth and metastasis of hepatocarcinoma cells by suppressing phosphorylation of FAK/AKT pathway via targeting FAM129A. J Adv Res, 2021, 36: 147-161. |
39. | Zhu QW, Yu Y, Zhang Y, et al. VLCAD inhibits the proliferation and invasion of hepatocellular cancer cells through regulating PI3K/AKT axis. Clin Transl Oncol, 2022, 24(5): 864-874. |
40. | Fan Y, Du Z, Ding Q, et al. SEPT6 drives hepatocellular carcinoma cell proliferation, migration and invasion via the Hippo/YAP signaling pathway. Int J Oncol, 2021, 58(6): 25. doi: 10.3892/ijo.2021.5205. |
41. | Liao LZ, Chen CT, Li NC, et al. Y-box binding protein-1 promotes epithelial-mesenchymal transition in sorafenib-resistant hepatocellular carcinoma cells. Int J Mol Sci, 2020, 22(1): 224. doi: 10.3390/ijms22010224. |
42. | Li D, Zhang J, Yang J, et al. CircMTO1 suppresses hepatocellular carcinoma progression via the miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis, 2021, 13(1): 12. doi: 10.1038/s41419-021-04464-3. |
43. | Gong J, Du C, Sun N, et al. Circular RNA hsa_circ_0005397 promotes hepatocellular carcinoma progression by regulating the miR-326/PDK2 axis. J Gene Med, 2021, 23(6): e3332. doi: 10.1002/jgm.3332. |
44. | Zhang Y, Zhang H, Wu S. LncRNA-CCDC144NL-AS1 promotes the development of hepatocellular carcinoma by inducing WDR5 expression via sponging miR-940. J Hepatocell Carcinoma, 2021, 8: 333-348. |
45. | Hu S, Liu J, Feng S, et al. LncRNA SUMO1P3 acts as a prognostic biomarker and promotes hepatocellular carcinoma growth and metastasis. Aging (Albany NY), 2021, 13(9): 12479-12492. |
46. | Mo W, Dai Y, Chen J, et al. Long noncoding RNA (lncRNA) MT1JP suppresses hepatocellular carcinoma (HCC) in vitro. Cancer Manag Res, 2020, 12: 7949-7960. |
47. | Van Hove I, Lemmens K, Van de Velde S, et al. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem, 2012, 123(2): 203-216. |
48. | Wan J, Zhang G, Li X, et al. Matrix metalloproteinase 3: a promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Front Physiol, 2021, 12: 663978. doi: 10.3389/fphys.2021.663978. |
49. | Monvoisin A, Bisson C, Si-Tayeb K, et al. Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int J Cancer, 2002, 97(2): 157-162. |
50. | Yu FL, Liu HJ, Lee JW, et al. Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. J Hepatol, 2005, 42(4): 520-527. |
51. | Cho SB, Park YL, Park SJ, et al. KITENIN is associated with activation of AP-1 target genes via MAPK cascades signaling in human hepatocellular carcinoma progression. Oncol Res, 2011, 19(3-4): 115-123. |
52. | Cong N, Li Z, Shao W, et al. Activation of ETA receptor by endothelin-1 induces hepatocellular carcinoma cell migration and invasion via ERK1/2 and AKT signaling pathways. J Membr Biol, 2016, 249(1-2): 119-128. |
53. | 贺军, 丁成明, 贺更生, 等. ESM-1和MMP-3表达与肝癌侵袭转移的关系. 中南医学科学杂志, 2012, 40(4): 368-372. |
54. | Yokoyama Y, Grünebach F, Schmidt SM, et al. Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clin Cancer Res, 2008, 14(17): 5503-5511. |
55. | Zeng Y, Liu X, Yan Z, et al. Sphingosine 1-phosphate regulates proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells via syndecan-1. Prog Biophys Mol Biol, 2019, 148: 32-38. |
56. | Liu Y, Zhou S, Shi J, et al. c-Myc transactivates GP73 and promotes metastasis of hepatocellular carcinoma cells through GP73-mediated MMP-7 trafficking in a mildly hypoxic microenvironment. Oncogenesis, 2019, 8(10): 58. doi: 10.1038/s41389-019-0166-7. |
57. | Yang X, Du X, Sun L, et al. SULT2B1b promotes epithelial-mesenchymal transition through activation of the β-catenin/MMP7 pathway in hepatocytes. Biochem Biophys Res Commun, 2019, 510(4): 495-500. |
58. | Tu K, Dou C, Zheng X, et al. Fibulin-5 inhibits hepatocellular carcinoma cell migration and invasion by down-regulating matrix metalloproteinase-7 expression. BMC Cancer, 2014, 14: 938. doi: 10.1186/1471-2407-14-938. |
59. | 左凯, 薛栋, 孔丽, 等. Pyk2、Twist及MMP-7在肝细胞癌中的表达及临床意义. 中国医学创新, 2017, 14(2): 45-48. |
60. | 彭莉, 李丹. 血清IL-17和MMP-7检测在肝细胞癌诊断中的作用. 中国医科大学学报, 2017, 46(3): 248-250. |
61. | 冯煦, 史沛. 肝细胞癌患者血清基质金属蛋白酶7、高尔基体蛋白73和白细胞介素17水平变化及其临床意义. 肝脏, 2019, 24(3): 296-299. |
62. | Fang C, Wen G, Zhang L, et al. An important role of matrix metalloproteinase-8 in angiogenesis in vitro and in vivo. Cardiovasc Res, 2013, 99(1): 146-155. |
63. | Cao Y, Yin Y, Wang X, et al. Sublethal irradiation promotes the metastatic potential of hepatocellular carcinoma cells. Cancer Sci, 2021, 112(1): 265-274. |
64. | Qin G, Luo M, Chen J, et al. Reciprocal activation between MMP-8 and TGF-β1 stimulates EMT and malignant progression of hepatocellular carcinoma. Cancer Lett, 2016, 374(1): 85-95. |
65. | Lempinen M, Lyytinen I, Nordin A, et al. Prognostic value of serum MMP-8, -9 and TIMP-1 in patients with hepatocellular carcinoma. Ann Med, 2013, 45(7): 482-487. |
66. | Opdenakker G, Van den Steen PE, Dubois B, et al. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol, 2001, 69(6): 851-859. |
67. | Sun SJ, Wang N, Sun ZW, et al. MiR-5692a promotes the invasion and metastasis of hepatocellular carcinoma via MMP9. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4869-4878. |
68. | Li J, Bao S, Wang L, et al. CircZKSCAN1 suppresses hepatocellular carcinoma tumorigenesis by regulating miR-873-5p/downregulation of deleted in liver cancer 1. Dig Dis Sci, 2021, 66(12): 4374-4383. |
69. | Jin Y, Zhang Y, Luo X. circRNA_PTPRA functions as a sponge of miR-582-3p to regulate hepatocellular carcinoma cell proliferation, migration, invasion and apoptosis. Exp Ther Med, 2021, 22(5): 1276. doi: 10.3892/etm.2021.10711. |
70. | Liu F, Deng W, Wan Z, et al. lncRNA MAGI2-AS3 overexpression had antitumor effect on hepatic cancer via miRNA-23a-3p/PTEN axis. Food Sci Nutr, 2021, 9(5): 2517-2530. |
71. | Yang G, Xu Q, Wan Y, et al. Circ-CSPP1 knockdown suppresses hepatocellular carcinoma progression through miR-493-5p releasing-mediated HMGB1 downregulation. Cell Signal, 2021, 86: 110065. doi: 10.1016/j.cellsig.2021.110065. |
72. | He S, Guo Z, Kang Q, et al. Circular RNA hsa_circ_0000517 modulates hepatocellular carcinoma advancement via the miR-326/SMAD6 axis. Cancer Cell Int, 2020, 20: 360. doi: 10.1186/s12935-020-01447-w. |
73. | Li L, Han T, Liu K, et al. LncRNA H19 promotes the development of hepatitis B related hepatocellular carcinoma through regulating microRNA-22 via EMT pathway. Eur Rev Med Pharmacol Sci, 2019, 23(12): 5392-5401. |
74. | 夏振雄, 周程. 肝细胞癌中FHIT、P16和MMP-9的表达和意义. 肝脏, 2019, 24(10): 1170-1172. |
75. | 高武林, 韦超, 郭晓烨. 术前血清MMP-9水平对HBV相关肝细胞癌患者肝切除术后生存的预测作用. 东南大学学报(医学版), 2022, 41(5): 652-659. |
76. | Zhang G, Miyake M, Lawton A, et al. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer, 2014, 14: 310. doi: 10.1186/1471-2407-14-310. |
77. | García-Irigoyen O, Latasa MU, Carotti S, et al. Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C-X-C chemokine receptor 4 axis. Hepatology, 2015, 62(1): 166-178. |
78. | Gao PT, Ding GY, Yang X, et al. Invasive potential of hepatocellular carcinoma is enhanced by loss of selenium-binding protein 1 and subsequent upregulation of CXCR4. Am J Cancer Res, 2018, 8(6): 1040-1049. |
79. | He X, Huang Z, Liu P, et al. Apatinib inhibits the invasion and metastasis of liver cancer cells by downregulating MMP-related proteins via regulation of the NF- κB signaling pathway. Biomed Res Int, 2020, 2020: 3126182. doi: 10.1155/2020/3126182. |
80. | Dali-Youcef N, Hnia K, Blaise S, et al. Matrix metalloproteinase 11 protects from diabesity and promotes metabolic switch. Sci Rep, 2016, 6: 25140. doi: 10.1038/srep25140. |
81. | Bi Q, Tang S, Xia L, et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One, 2012, 7(6): e40169. doi: 10.1371/journal.pone.0040169. |
82. | Wang B, Hsu CJ, Lee HL, et al. Impact of matrix metalloproteinase-11 gene polymorphisms upon the development and progression of hepatocellular carcinoma. Int J Med Sci, 2018, 15(6): 653-658. |
83. | Saad H, Zahran MA, Hendy O, et al. Matrix metalloproteinase-11 gene polymorphisms as a risk for hepatocellular carcinoma development in Egyptian patients. Asian Pac J Cancer Prev, 2020, 21(12): 3725-3734. |
84. | Gao H, Zhou X, Li H, et al. Role of matrix metallopeptidase 12 in the development of hepatocellular carcinoma. J Invest Surg, 2021, 34(4): 366-372. |
85. | Ng KT, Qi X, Kong KL, et al. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with poor prognosis of hepatocellular carcinoma. Eur J Cancer, 2011, 47(15): 2299-2305. |
86. | Elshimi E, Sakr MAM, Morad WS, et al. Optimizing the diagnostic role of alpha-fetoprotein and abdominal ultrasound by adding overexpressed blood mRNA matrix metalloproteinase-12 for diagnosis of HCV-related hepatocellular carcinoma. Gastrointest Tumors, 2019, 5(3-4): 100-108. |
87. | 王宝菊, 冯振博. 基质金属蛋白酶-12在肝细胞肝癌中的表达及临床意义. 广西医科大学学报, 2021, 38(3): 556-560. |
88. | Jin D, Tao J, Li D, et al. Golgi protein 73 activation of MMP-13 promotes hepatocellular carcinoma cell invasion. Oncotarget, 2015, 6(32): 33523-33533. |
89. | Zhang Q, Luo Q, Yuan X, et al. Atmospheric particulate matter 2.5 promotes the migration and invasion of hepatocellular carcinoma cells. Oncol Lett, 2017, 13(5): 3445-3450. |
90. | Li Y, Zuo H, Wang H, et al. Decrease of MLK4 prevents hepatocellular carcinoma (HCC) through reducing metastasis and inducing apoptosis regulated by ROS/MAPKs signaling. Biomed Pharmacother, 2019, 116: 108749. doi: 10.1016/j.biopha.2019.108749. |
91. | Chiu YS, Hsing CH, Li CF, et al. Anti-IL-20 monoclonal antibody inhibited tumor growth in hepatocellular carcinoma. Sci Rep, 2017, 7(1): 17609. doi: 10.1038/s41598-017-17054-1. |
92. | 徐正府, 任雪霞, 黄介飞, 等. MMP-13及p38MAPK在肝细胞癌侵袭和转移中的作用. 苏州大学学报(医学版), 2008, 28(6): 966-969, 1094. |
93. | 朱建云, 张建忠, 黄书明, 等. MMP-13和TIMP-1在良恶性肝病患者血清、肝组织中的表达及临床意义. 临床检验杂志, 2012, 30(6): 433-435. |
94. | Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int J Mol Sci, 2021, 23(1): 146. doi: 10.3390/ijms23010146. |
95. | Li T, Xie J, Shen C, et al. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14. PLoS One, 2014, 9(12): e115577. doi: 10.1371/journal.pone.0115577. |
96. | Chen TY, Li YC, Liu YF, et al. Role of MMP14 gene polymorphisms in susceptibility and pathological development to hepatocellular carcinoma. Ann Surg Oncol, 2011, 18(8): 2348-2356. |
97. | Lin CZ, Ou RW, Hu YH. Lentiviral-mediated microRNA-26b up-regulation inhibits proliferation and migration of hepatocellular carcinoma cells. Kaohsiung J Med Sci, 2018, 34(10): 547-555. |
98. | Kim HS, Kim JS, Park NR, et al. Exosomal miR-125b exerts anti-metastatic properties and predicts early metastasis of hepatocellular carcinoma. Front Oncol, 2021, 11: 637247. doi: 10.3389/fonc.2021.637247. |
99. | 刘敏, 曾霞, 侯恩存, 等. Glypican3、MMP-9和MMP-14在原发性肝癌中的表达与临床意义. 重庆医学, 2014, 43(2): 173-176. |
100. | Inagaki Y, Shiraki K, Sugimoto K, et al. Epigenetic regulation of proliferation and invasion in hepatocellular carcinoma cells by CBP/p300 histone acetyltransferase activity. Int J Oncol, 2016, 48(2): 533-540. |
101. | Zheng S, Wu H, Wang F, et al. The oncoprotein HBXIP facilitates metastasis of hepatocellular carcinoma cells by activation of MMP15 expression. Cancer Manag Res, 2019, 11: 4529-4540. |
102. | 苏纯洁, 何前进, 毛伟明, 等. 沉默AFP表达对肝癌细胞侵袭转移的影响及机制. 山东医药, 2019, 59(4): 44-47. |
103. | Shen Z, Wang X, Yu X, et al. MMP16 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Oncotarget, 2017, 8(42): 72197-72204. |
104. | Zhou H, Chen Y. CircRNA has_circ_0001806 promotes hepatocellular carcinoma progression via the miR-193a-5p/MMP16 pathway. Braz J Med Biol Res, 2021, 54(12): e11459. doi: 10.1590/1414-431X2021e11459. |
105. | Lin Y, Zheng ZH, Wang JX, et al. Tumor cell-derived exosomal circ-0072088 suppresses migration and invasion of hepatic carcinoma cells through regulating MMP-16. Front Cell Dev Biol, 2021, 9: 726323. doi: 10.3389/fcell.2021.726323. |
106. | Li T, Xie J, Shen C, et al. Amplification of long noncoding RNA ZFAS1 promotes metastasis in hepatocellular carcinoma. Cancer Res, 2015, 75(15): 3181-3191. |
107. | Blanco MJ, Rodríguez-Martín I, Learte AIR, et al. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo. PLoS One, 2017, 12(9): e0184767. doi: 10.1371/journal.pone.0184767. |
108. | Martín-Alonso M, Iqbal S, Vornewald PM, et al. Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage. Nat Commun, 2021, 12(1): 6741. doi: 10.1038/s41467-021-26904-6. |
109. | Chen Z, Wu G, Ye F, et al. High expression of MMP19 is associated with poor prognosis in patients with colorectal cancer. BMC Cancer, 2019, 19(1): 448. doi: 10.1186/s12885-019-5673-6. |
110. | Yu G, Herazo-Maya JD, Nukui T, et al. Matrix metalloproteinase-19 promotes metastatic behavior in vitro and is associated with increased mortality in non-small cell lung cancer. Am J Respir Crit Care Med, 2014, 190(7): 780-790. |
111. | Aseervatham J, Geetu S, Anunobi CC, et al. Survey of dentin sialophosphoprotein and its cognate matrix metalloproteinase-20 in human cancers. Cancer Med, 2019, 8(5): 2167-2178. |
112. | Ge K, Huang J, Wang W, et al. Serine protease inhibitor kazal-type 6 inhibits tumorigenesis of human hepatocellular carcinoma cells via its extracellular action. Oncotarget, 2017, 8(4): 5965-5975. |
113. | Ahokas K, Lohi J, Illman SA, et al. Matrix metalloproteinase-21 is expressed epithelially during development and in cancer and is up-regulated by transforming growth factor-β1 in keratinocytes. Lab Invest, 2003, 83(12): 1887-1899. |
114. | Xie Y, Mustafa A, Yerzhan A, et al. Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov, 2017, 3: 17036. doi: 10.1038/cddiscovery.2017.36. |
115. | Xiang Y, Liu L, Wang Y, et al. ADAM17 promotes the invasion of hepatocellular carcinoma via upregulation MMP21. Cancer Cell Int, 2020, 20: 516. doi: 10.1186/s12935-020-01556-6. |
116. | Zhou J, Liu L, Hu X, et al. Matrix metalloproteinase-21 promotes metastasis via increasing the recruitment and M2 polarization of macrophages in HCC. Cancer Sci, 2023, 114(2): 423-435. |
117. | Velasco G, Pendás AM, Fueyo A, et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem, 1999, 274(8): 4570-4576. |
118. | Okimoto RA, Breitenbuecher F, Olivas VR, et al. Inactivation of Capicua drives cancer metastasis. Nat Genet, 2017, 49(1): 87-96. |
119. | Mohammed FF, Pennington CJ, Kassiri Z, et al. Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology, 2005, 41: 857-867. |
120. | Sohail A, Sun Q, Zhao H, et al. MT4-(MMP17) and MT6-MMP (MMP25), a unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev, 2008, 27(2): 289-302. |
121. | Wang S, Lin H, Zhao T, et al. Expression and purification of an FGF9 fusion protein in E. coli, and the effects of the FGF9 subfamily on human hepatocellular carcinoma cell proliferation and migration. Appl Microbiol Biotechnol, 2017, 101(21): 7823-7835. |
122. | Yu C, Wang Z, Xu X, et al. Circulating hepatocellular carcinoma cells are characterized by CXCR4 and MMP26. Cell Physiol Biochem, 2015, 36(6): 2393-2402. |
123. | 刘震寰, 雷亚松, 唐枭雄. 原发性肝癌立体定向放射治疗效果及对血清AFP和MMP-26水平与生存期影响. 社区医学杂志, 2023, 21(18): 935-939. |
124. | 宁珠, 殷芳, 薛致骞. 基质金属蛋白酶-26在细胞性肝癌中的表达水平与患者临床病理特征的关系. 河北医药, 2018, 40(22): 3374-3377, 3381. |
125. | Cominelli A, Halbout M, N’Kuli F, et al. A unique C-terminal domain allows retention of matrix metalloproteinase-27 in the endoplasmic reticulum. Traffic, 2014, 15(4): 401-417. |
126. | Cominelli A, Gaide Chevronnay HP, Lemoine P, et al. Matrix metalloproteinase-27 is expressed in CD163+/CD206+ M2 macrophages in the cycling human endometrium and in superficial endometriotic lesions. Mol Hum Reprod, 2014, 20(8): 767-775. |
127. | Köhrmann A, Kammerer U, Kapp M, et al. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: new findings and review of the literature. BMC Cancer, 2009, 9: 188. doi: 10.1186/1471-2407-9-188. |
128. | Illman SA, Lehti K, Keski-Oja J, et al. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci, 2006, 119(Pt 18): 3856-3865. |
129. | Zhou J, Zheng X, Feng M, et al. Upregulated MMP28 in hepatocellular carcinoma promotes metastasis via Notch3 signaling and predicts unfavorable prognosis. Int J Biol Sci, 2019, 15(4): 812-825. |
- 1. Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
- 2. Zhang H, Zhang W, Jiang L, et al. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark Res, 2022, 10(1): 3. doi: 10.1186/s40364-021-00350-4.
- 3. Gupta H, Youn GS, Shin MJ, et al. Role of gut microbiota in hepatocarcinogenesis. Microorganisms, 2019, 7(5): 121. doi: 10.3390/microorganisms7050121.
- 4. Wong MC, Jiang JY, Goggins WB, et al. International incidence and mortality trends of liver cancer: a global profile. Sci Rep, 2017, 7: 45846. doi: 10.1038/srep45846.
- 5. Scheau C, Bădărău AI, Gherguş AE, et al. Minimal hepatic encephalopathy diagnosis by magnetic resonance spectroscopy. A case report. J Gastrointestin Liver Dis, 2013, 22(4): 455-459.
- 6. Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer, 2017, 16(1): 4. doi: 10.1186/s12943-016-0572-9.
- 7. Ge Y, Mu W, Ba Q, et al. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett, 2020, 477: 41-48.
- 8. Sia D, Villanueva A, Friedman SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology, 2017, 152(4): 745-761.
- 9. Carissimi F, Barbaglia MN, Salmi L, et al. Finding the seed of recurrence: hepatocellular carcinoma circulating tumor cells and their potential to drive the surgical treatment. World J Gastrointest Surg, 2021, 13(9): 967-978.
- 10. Debnath P, Huirem RS, Dutta P, et al. Epithelial-mesenchymal transition and its transcription factors. Biosci Rep, 2022, 42(1): BSR20211754. doi: 10.1042/BSR20211754.
- 11. Brînzea A, Nedelcu RI, Turcu G, et al. TIMPs expression in lentigo maligna÷lentigo maligna melanoma versus aged skin—a review of the literature and personal experience. Rom J Morphol Embryol. 2017, 58(3): 717-721.
- 12. Scheau C, Badarau IA, Costache R, et al. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol (Amst), 2019, 2019: 9423907. doi: 10.1155/2019/9423907.
- 13. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci, 2017, 147: 1-73.
- 14. Smith BN, Bhowmick NA. Role of EMT in metastasis and therapy resistance. J Clin Med, 2016, 5(2): 17. doi: 10.3390/jcm5020017.
- 15. Brkic M, Balusu S, Libert C, et al. Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm, 2015, 2015: 620581. doi: 10.1155/2015/620581.
- 16. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol, 2014, 15(12): 786-801.
- 17. Liu J, Khalil RA. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci, 2017, 148: 355-420.
- 18. Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol, 2007, 26(8): 587-596.
- 19. Stolow MA, Bauzon DD, Li J, et al. Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol Biol Cell, 1996, 7(10): 1471-1483.
- 20. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem, 2016, 31(sup1): 177-183.
- 21. Duarte S, Baber J, Fujii T, et al. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol, 2015, 44-46: 147-156.
- 22. Yadav L, Puri N, Rastogi V, et al. Matrix metalloproteinases and cancer—roles in threat and therapy. Asian Pac J Cancer Prev, 2014, 15(3): 1085-1091.
- 23. Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol, 2008, 40(6-7): 1334-1347.
- 24. Zurac S, Neagu M, Constantin C, et al. Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett, 2016, 11(5): 3354-3360.
- 25. Lin H, Xu P, Huang M. Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments. Future Med Chem, 2022, 14(1): 35-51.
- 26. Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells, 2020, 9(5): 1313. doi: 10.3390/cells9051313.
- 27. Mannello F, Gazzanelli G. Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis, 2001, 6(6): 479-482.
- 28. Olivares-Urbano MA, Griñán-Lisón C, Zurita M, et al. Matrix metalloproteases and TIMPs as prognostic biomarkers in breast cancer patients treated with radiotherapy: a pilot study. J Cell Mol Med, 2020, 24(1): 139-148.
- 29. Dai L, Mugaanyi J, Cai X, et al. Comprehensive bioinformatic analysis of MMP1 in hepatocellular carcinoma and establishment of relevant prognostic model. Sci Rep, 2022, 12(1): 13639. doi: 10.1038/s41598-022-17954-x.
- 30. Yu CL, Yu YL, Yang SF, et al. Praeruptorin A reduces metastasis of human hepatocellular carcinoma cells by targeting ERK/MMP1 signaling pathway. Environ Toxicol, 2021, 36(4): 540-549.
- 31. Liu H, Lan T, Li H, et al. Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics, 2021, 11(3): 1396-1411.
- 32. Liu X, Yang L, Tu J, et al. microRNA-526b servers as a prognostic factor and exhibits tumor suppressive property by targeting Sirtuin 7 in hepatocellular carcinoma. Oncotarget, 2017, 8(50): 87737-87749.
- 33. 刘爱霞, 张浩, 孙杰, 等. GPS2对肝癌细胞系MHCC-97H增殖、迁移与侵袭的调控作用. 基础医学与临床, 2023, 43(12): 1784-1791.
- 34. 杨磊, 荣维淇, 肖汀, 等. 应用分泌/释放蛋白质组学鉴定HBV相关的肝细胞癌血浆标志物. 中国科学: 生命科学, 2013, 43(8): 663-671.
- 35. Attallah AM, Albannan MS, El-Deen MS, et al. Diagnostic role of collagen-Ⅲ and matrix metalloproteinase-1 for early detection of hepatocellular carcinoma. Br J Biomed Sci, 2020, 77(2): 58-63.
- 36. Wang B, Ding YM, Fan P, et al. Expression and significance of MMP2 and HIF-1α in hepatocellular carcinoma. Oncol Lett, 2014, 8(2): 539-546.
- 37. Schoedel KE, Tyner VZ, Kim TH, et al. HGF, MET, and matrix-related proteases in hepatocellular carcinoma, fibrolamellar variant, cirrhotic and normal liver. Mod Pathol, 2003, 16(1): 14-21.
- 38. Ayesha M, Majid A, Zhao D, et al. MiR-4521 plays a tumor repressive role in growth and metastasis of hepatocarcinoma cells by suppressing phosphorylation of FAK/AKT pathway via targeting FAM129A. J Adv Res, 2021, 36: 147-161.
- 39. Zhu QW, Yu Y, Zhang Y, et al. VLCAD inhibits the proliferation and invasion of hepatocellular cancer cells through regulating PI3K/AKT axis. Clin Transl Oncol, 2022, 24(5): 864-874.
- 40. Fan Y, Du Z, Ding Q, et al. SEPT6 drives hepatocellular carcinoma cell proliferation, migration and invasion via the Hippo/YAP signaling pathway. Int J Oncol, 2021, 58(6): 25. doi: 10.3892/ijo.2021.5205.
- 41. Liao LZ, Chen CT, Li NC, et al. Y-box binding protein-1 promotes epithelial-mesenchymal transition in sorafenib-resistant hepatocellular carcinoma cells. Int J Mol Sci, 2020, 22(1): 224. doi: 10.3390/ijms22010224.
- 42. Li D, Zhang J, Yang J, et al. CircMTO1 suppresses hepatocellular carcinoma progression via the miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis, 2021, 13(1): 12. doi: 10.1038/s41419-021-04464-3.
- 43. Gong J, Du C, Sun N, et al. Circular RNA hsa_circ_0005397 promotes hepatocellular carcinoma progression by regulating the miR-326/PDK2 axis. J Gene Med, 2021, 23(6): e3332. doi: 10.1002/jgm.3332.
- 44. Zhang Y, Zhang H, Wu S. LncRNA-CCDC144NL-AS1 promotes the development of hepatocellular carcinoma by inducing WDR5 expression via sponging miR-940. J Hepatocell Carcinoma, 2021, 8: 333-348.
- 45. Hu S, Liu J, Feng S, et al. LncRNA SUMO1P3 acts as a prognostic biomarker and promotes hepatocellular carcinoma growth and metastasis. Aging (Albany NY), 2021, 13(9): 12479-12492.
- 46. Mo W, Dai Y, Chen J, et al. Long noncoding RNA (lncRNA) MT1JP suppresses hepatocellular carcinoma (HCC) in vitro. Cancer Manag Res, 2020, 12: 7949-7960.
- 47. Van Hove I, Lemmens K, Van de Velde S, et al. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem, 2012, 123(2): 203-216.
- 48. Wan J, Zhang G, Li X, et al. Matrix metalloproteinase 3: a promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Front Physiol, 2021, 12: 663978. doi: 10.3389/fphys.2021.663978.
- 49. Monvoisin A, Bisson C, Si-Tayeb K, et al. Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int J Cancer, 2002, 97(2): 157-162.
- 50. Yu FL, Liu HJ, Lee JW, et al. Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. J Hepatol, 2005, 42(4): 520-527.
- 51. Cho SB, Park YL, Park SJ, et al. KITENIN is associated with activation of AP-1 target genes via MAPK cascades signaling in human hepatocellular carcinoma progression. Oncol Res, 2011, 19(3-4): 115-123.
- 52. Cong N, Li Z, Shao W, et al. Activation of ETA receptor by endothelin-1 induces hepatocellular carcinoma cell migration and invasion via ERK1/2 and AKT signaling pathways. J Membr Biol, 2016, 249(1-2): 119-128.
- 53. 贺军, 丁成明, 贺更生, 等. ESM-1和MMP-3表达与肝癌侵袭转移的关系. 中南医学科学杂志, 2012, 40(4): 368-372.
- 54. Yokoyama Y, Grünebach F, Schmidt SM, et al. Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clin Cancer Res, 2008, 14(17): 5503-5511.
- 55. Zeng Y, Liu X, Yan Z, et al. Sphingosine 1-phosphate regulates proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells via syndecan-1. Prog Biophys Mol Biol, 2019, 148: 32-38.
- 56. Liu Y, Zhou S, Shi J, et al. c-Myc transactivates GP73 and promotes metastasis of hepatocellular carcinoma cells through GP73-mediated MMP-7 trafficking in a mildly hypoxic microenvironment. Oncogenesis, 2019, 8(10): 58. doi: 10.1038/s41389-019-0166-7.
- 57. Yang X, Du X, Sun L, et al. SULT2B1b promotes epithelial-mesenchymal transition through activation of the β-catenin/MMP7 pathway in hepatocytes. Biochem Biophys Res Commun, 2019, 510(4): 495-500.
- 58. Tu K, Dou C, Zheng X, et al. Fibulin-5 inhibits hepatocellular carcinoma cell migration and invasion by down-regulating matrix metalloproteinase-7 expression. BMC Cancer, 2014, 14: 938. doi: 10.1186/1471-2407-14-938.
- 59. 左凯, 薛栋, 孔丽, 等. Pyk2、Twist及MMP-7在肝细胞癌中的表达及临床意义. 中国医学创新, 2017, 14(2): 45-48.
- 60. 彭莉, 李丹. 血清IL-17和MMP-7检测在肝细胞癌诊断中的作用. 中国医科大学学报, 2017, 46(3): 248-250.
- 61. 冯煦, 史沛. 肝细胞癌患者血清基质金属蛋白酶7、高尔基体蛋白73和白细胞介素17水平变化及其临床意义. 肝脏, 2019, 24(3): 296-299.
- 62. Fang C, Wen G, Zhang L, et al. An important role of matrix metalloproteinase-8 in angiogenesis in vitro and in vivo. Cardiovasc Res, 2013, 99(1): 146-155.
- 63. Cao Y, Yin Y, Wang X, et al. Sublethal irradiation promotes the metastatic potential of hepatocellular carcinoma cells. Cancer Sci, 2021, 112(1): 265-274.
- 64. Qin G, Luo M, Chen J, et al. Reciprocal activation between MMP-8 and TGF-β1 stimulates EMT and malignant progression of hepatocellular carcinoma. Cancer Lett, 2016, 374(1): 85-95.
- 65. Lempinen M, Lyytinen I, Nordin A, et al. Prognostic value of serum MMP-8, -9 and TIMP-1 in patients with hepatocellular carcinoma. Ann Med, 2013, 45(7): 482-487.
- 66. Opdenakker G, Van den Steen PE, Dubois B, et al. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol, 2001, 69(6): 851-859.
- 67. Sun SJ, Wang N, Sun ZW, et al. MiR-5692a promotes the invasion and metastasis of hepatocellular carcinoma via MMP9. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4869-4878.
- 68. Li J, Bao S, Wang L, et al. CircZKSCAN1 suppresses hepatocellular carcinoma tumorigenesis by regulating miR-873-5p/downregulation of deleted in liver cancer 1. Dig Dis Sci, 2021, 66(12): 4374-4383.
- 69. Jin Y, Zhang Y, Luo X. circRNA_PTPRA functions as a sponge of miR-582-3p to regulate hepatocellular carcinoma cell proliferation, migration, invasion and apoptosis. Exp Ther Med, 2021, 22(5): 1276. doi: 10.3892/etm.2021.10711.
- 70. Liu F, Deng W, Wan Z, et al. lncRNA MAGI2-AS3 overexpression had antitumor effect on hepatic cancer via miRNA-23a-3p/PTEN axis. Food Sci Nutr, 2021, 9(5): 2517-2530.
- 71. Yang G, Xu Q, Wan Y, et al. Circ-CSPP1 knockdown suppresses hepatocellular carcinoma progression through miR-493-5p releasing-mediated HMGB1 downregulation. Cell Signal, 2021, 86: 110065. doi: 10.1016/j.cellsig.2021.110065.
- 72. He S, Guo Z, Kang Q, et al. Circular RNA hsa_circ_0000517 modulates hepatocellular carcinoma advancement via the miR-326/SMAD6 axis. Cancer Cell Int, 2020, 20: 360. doi: 10.1186/s12935-020-01447-w.
- 73. Li L, Han T, Liu K, et al. LncRNA H19 promotes the development of hepatitis B related hepatocellular carcinoma through regulating microRNA-22 via EMT pathway. Eur Rev Med Pharmacol Sci, 2019, 23(12): 5392-5401.
- 74. 夏振雄, 周程. 肝细胞癌中FHIT、P16和MMP-9的表达和意义. 肝脏, 2019, 24(10): 1170-1172.
- 75. 高武林, 韦超, 郭晓烨. 术前血清MMP-9水平对HBV相关肝细胞癌患者肝切除术后生存的预测作用. 东南大学学报(医学版), 2022, 41(5): 652-659.
- 76. Zhang G, Miyake M, Lawton A, et al. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer, 2014, 14: 310. doi: 10.1186/1471-2407-14-310.
- 77. García-Irigoyen O, Latasa MU, Carotti S, et al. Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C-X-C chemokine receptor 4 axis. Hepatology, 2015, 62(1): 166-178.
- 78. Gao PT, Ding GY, Yang X, et al. Invasive potential of hepatocellular carcinoma is enhanced by loss of selenium-binding protein 1 and subsequent upregulation of CXCR4. Am J Cancer Res, 2018, 8(6): 1040-1049.
- 79. He X, Huang Z, Liu P, et al. Apatinib inhibits the invasion and metastasis of liver cancer cells by downregulating MMP-related proteins via regulation of the NF- κB signaling pathway. Biomed Res Int, 2020, 2020: 3126182. doi: 10.1155/2020/3126182.
- 80. Dali-Youcef N, Hnia K, Blaise S, et al. Matrix metalloproteinase 11 protects from diabesity and promotes metabolic switch. Sci Rep, 2016, 6: 25140. doi: 10.1038/srep25140.
- 81. Bi Q, Tang S, Xia L, et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One, 2012, 7(6): e40169. doi: 10.1371/journal.pone.0040169.
- 82. Wang B, Hsu CJ, Lee HL, et al. Impact of matrix metalloproteinase-11 gene polymorphisms upon the development and progression of hepatocellular carcinoma. Int J Med Sci, 2018, 15(6): 653-658.
- 83. Saad H, Zahran MA, Hendy O, et al. Matrix metalloproteinase-11 gene polymorphisms as a risk for hepatocellular carcinoma development in Egyptian patients. Asian Pac J Cancer Prev, 2020, 21(12): 3725-3734.
- 84. Gao H, Zhou X, Li H, et al. Role of matrix metallopeptidase 12 in the development of hepatocellular carcinoma. J Invest Surg, 2021, 34(4): 366-372.
- 85. Ng KT, Qi X, Kong KL, et al. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with poor prognosis of hepatocellular carcinoma. Eur J Cancer, 2011, 47(15): 2299-2305.
- 86. Elshimi E, Sakr MAM, Morad WS, et al. Optimizing the diagnostic role of alpha-fetoprotein and abdominal ultrasound by adding overexpressed blood mRNA matrix metalloproteinase-12 for diagnosis of HCV-related hepatocellular carcinoma. Gastrointest Tumors, 2019, 5(3-4): 100-108.
- 87. 王宝菊, 冯振博. 基质金属蛋白酶-12在肝细胞肝癌中的表达及临床意义. 广西医科大学学报, 2021, 38(3): 556-560.
- 88. Jin D, Tao J, Li D, et al. Golgi protein 73 activation of MMP-13 promotes hepatocellular carcinoma cell invasion. Oncotarget, 2015, 6(32): 33523-33533.
- 89. Zhang Q, Luo Q, Yuan X, et al. Atmospheric particulate matter 2.5 promotes the migration and invasion of hepatocellular carcinoma cells. Oncol Lett, 2017, 13(5): 3445-3450.
- 90. Li Y, Zuo H, Wang H, et al. Decrease of MLK4 prevents hepatocellular carcinoma (HCC) through reducing metastasis and inducing apoptosis regulated by ROS/MAPKs signaling. Biomed Pharmacother, 2019, 116: 108749. doi: 10.1016/j.biopha.2019.108749.
- 91. Chiu YS, Hsing CH, Li CF, et al. Anti-IL-20 monoclonal antibody inhibited tumor growth in hepatocellular carcinoma. Sci Rep, 2017, 7(1): 17609. doi: 10.1038/s41598-017-17054-1.
- 92. 徐正府, 任雪霞, 黄介飞, 等. MMP-13及p38MAPK在肝细胞癌侵袭和转移中的作用. 苏州大学学报(医学版), 2008, 28(6): 966-969, 1094.
- 93. 朱建云, 张建忠, 黄书明, 等. MMP-13和TIMP-1在良恶性肝病患者血清、肝组织中的表达及临床意义. 临床检验杂志, 2012, 30(6): 433-435.
- 94. Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int J Mol Sci, 2021, 23(1): 146. doi: 10.3390/ijms23010146.
- 95. Li T, Xie J, Shen C, et al. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14. PLoS One, 2014, 9(12): e115577. doi: 10.1371/journal.pone.0115577.
- 96. Chen TY, Li YC, Liu YF, et al. Role of MMP14 gene polymorphisms in susceptibility and pathological development to hepatocellular carcinoma. Ann Surg Oncol, 2011, 18(8): 2348-2356.
- 97. Lin CZ, Ou RW, Hu YH. Lentiviral-mediated microRNA-26b up-regulation inhibits proliferation and migration of hepatocellular carcinoma cells. Kaohsiung J Med Sci, 2018, 34(10): 547-555.
- 98. Kim HS, Kim JS, Park NR, et al. Exosomal miR-125b exerts anti-metastatic properties and predicts early metastasis of hepatocellular carcinoma. Front Oncol, 2021, 11: 637247. doi: 10.3389/fonc.2021.637247.
- 99. 刘敏, 曾霞, 侯恩存, 等. Glypican3、MMP-9和MMP-14在原发性肝癌中的表达与临床意义. 重庆医学, 2014, 43(2): 173-176.
- 100. Inagaki Y, Shiraki K, Sugimoto K, et al. Epigenetic regulation of proliferation and invasion in hepatocellular carcinoma cells by CBP/p300 histone acetyltransferase activity. Int J Oncol, 2016, 48(2): 533-540.
- 101. Zheng S, Wu H, Wang F, et al. The oncoprotein HBXIP facilitates metastasis of hepatocellular carcinoma cells by activation of MMP15 expression. Cancer Manag Res, 2019, 11: 4529-4540.
- 102. 苏纯洁, 何前进, 毛伟明, 等. 沉默AFP表达对肝癌细胞侵袭转移的影响及机制. 山东医药, 2019, 59(4): 44-47.
- 103. Shen Z, Wang X, Yu X, et al. MMP16 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Oncotarget, 2017, 8(42): 72197-72204.
- 104. Zhou H, Chen Y. CircRNA has_circ_0001806 promotes hepatocellular carcinoma progression via the miR-193a-5p/MMP16 pathway. Braz J Med Biol Res, 2021, 54(12): e11459. doi: 10.1590/1414-431X2021e11459.
- 105. Lin Y, Zheng ZH, Wang JX, et al. Tumor cell-derived exosomal circ-0072088 suppresses migration and invasion of hepatic carcinoma cells through regulating MMP-16. Front Cell Dev Biol, 2021, 9: 726323. doi: 10.3389/fcell.2021.726323.
- 106. Li T, Xie J, Shen C, et al. Amplification of long noncoding RNA ZFAS1 promotes metastasis in hepatocellular carcinoma. Cancer Res, 2015, 75(15): 3181-3191.
- 107. Blanco MJ, Rodríguez-Martín I, Learte AIR, et al. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo. PLoS One, 2017, 12(9): e0184767. doi: 10.1371/journal.pone.0184767.
- 108. Martín-Alonso M, Iqbal S, Vornewald PM, et al. Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage. Nat Commun, 2021, 12(1): 6741. doi: 10.1038/s41467-021-26904-6.
- 109. Chen Z, Wu G, Ye F, et al. High expression of MMP19 is associated with poor prognosis in patients with colorectal cancer. BMC Cancer, 2019, 19(1): 448. doi: 10.1186/s12885-019-5673-6.
- 110. Yu G, Herazo-Maya JD, Nukui T, et al. Matrix metalloproteinase-19 promotes metastatic behavior in vitro and is associated with increased mortality in non-small cell lung cancer. Am J Respir Crit Care Med, 2014, 190(7): 780-790.
- 111. Aseervatham J, Geetu S, Anunobi CC, et al. Survey of dentin sialophosphoprotein and its cognate matrix metalloproteinase-20 in human cancers. Cancer Med, 2019, 8(5): 2167-2178.
- 112. Ge K, Huang J, Wang W, et al. Serine protease inhibitor kazal-type 6 inhibits tumorigenesis of human hepatocellular carcinoma cells via its extracellular action. Oncotarget, 2017, 8(4): 5965-5975.
- 113. Ahokas K, Lohi J, Illman SA, et al. Matrix metalloproteinase-21 is expressed epithelially during development and in cancer and is up-regulated by transforming growth factor-β1 in keratinocytes. Lab Invest, 2003, 83(12): 1887-1899.
- 114. Xie Y, Mustafa A, Yerzhan A, et al. Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov, 2017, 3: 17036. doi: 10.1038/cddiscovery.2017.36.
- 115. Xiang Y, Liu L, Wang Y, et al. ADAM17 promotes the invasion of hepatocellular carcinoma via upregulation MMP21. Cancer Cell Int, 2020, 20: 516. doi: 10.1186/s12935-020-01556-6.
- 116. Zhou J, Liu L, Hu X, et al. Matrix metalloproteinase-21 promotes metastasis via increasing the recruitment and M2 polarization of macrophages in HCC. Cancer Sci, 2023, 114(2): 423-435.
- 117. Velasco G, Pendás AM, Fueyo A, et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem, 1999, 274(8): 4570-4576.
- 118. Okimoto RA, Breitenbuecher F, Olivas VR, et al. Inactivation of Capicua drives cancer metastasis. Nat Genet, 2017, 49(1): 87-96.
- 119. Mohammed FF, Pennington CJ, Kassiri Z, et al. Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology, 2005, 41: 857-867.
- 120. Sohail A, Sun Q, Zhao H, et al. MT4-(MMP17) and MT6-MMP (MMP25), a unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev, 2008, 27(2): 289-302.
- 121. Wang S, Lin H, Zhao T, et al. Expression and purification of an FGF9 fusion protein in E. coli, and the effects of the FGF9 subfamily on human hepatocellular carcinoma cell proliferation and migration. Appl Microbiol Biotechnol, 2017, 101(21): 7823-7835.
- 122. Yu C, Wang Z, Xu X, et al. Circulating hepatocellular carcinoma cells are characterized by CXCR4 and MMP26. Cell Physiol Biochem, 2015, 36(6): 2393-2402.
- 123. 刘震寰, 雷亚松, 唐枭雄. 原发性肝癌立体定向放射治疗效果及对血清AFP和MMP-26水平与生存期影响. 社区医学杂志, 2023, 21(18): 935-939.
- 124. 宁珠, 殷芳, 薛致骞. 基质金属蛋白酶-26在细胞性肝癌中的表达水平与患者临床病理特征的关系. 河北医药, 2018, 40(22): 3374-3377, 3381.
- 125. Cominelli A, Halbout M, N’Kuli F, et al. A unique C-terminal domain allows retention of matrix metalloproteinase-27 in the endoplasmic reticulum. Traffic, 2014, 15(4): 401-417.
- 126. Cominelli A, Gaide Chevronnay HP, Lemoine P, et al. Matrix metalloproteinase-27 is expressed in CD163+/CD206+ M2 macrophages in the cycling human endometrium and in superficial endometriotic lesions. Mol Hum Reprod, 2014, 20(8): 767-775.
- 127. Köhrmann A, Kammerer U, Kapp M, et al. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: new findings and review of the literature. BMC Cancer, 2009, 9: 188. doi: 10.1186/1471-2407-9-188.
- 128. Illman SA, Lehti K, Keski-Oja J, et al. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci, 2006, 119(Pt 18): 3856-3865.
- 129. Zhou J, Zheng X, Feng M, et al. Upregulated MMP28 in hepatocellular carcinoma promotes metastasis via Notch3 signaling and predicts unfavorable prognosis. Int J Biol Sci, 2019, 15(4): 812-825.