1. |
Malvezzi M, Bonifazi M, Bertuccio P, et al. An age-period-cohort analysis of gastric cancer mortality from 1950 to 2007 in Europe. Ann Epidemiol, 2010, 20(12): 898-905.
|
2. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
3. |
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer, 2019, 144(8): 1941-1953.
|
4. |
Hunt RH, Camilleri M, Crowe SE, et al. The stomach in health and disease. Gut, 2015, 64(10): 1650-1668.
|
5. |
Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development, 2015, 142(18): 3113-3125.
|
6. |
Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol, 2014, 15(10): 647-664.
|
7. |
Seidlitz T, Merker SR, Rothe A, et al. Human gastric cancer modelling using organoids. Gut, 2019, 68(2): 207-217.
|
8. |
Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359(6378): 920-926.
|
9. |
Nanki K, Toshimitsu K, Takano A, et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell, 2018, 174(4): 856-869.
|
10. |
Yan HHN, Siu HC, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell, 2018, 23(6): 882-897.
|
11. |
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018, 18(7): 407-418.
|
12. |
Li G, Ma S, Wu Q, et al. Establishment of gastric signet ring cell carcinoma organoid for the therapeutic drug testing. Cell Death Discov, 2022, 8(1): 6. doi: 10.1038/s41420-021-00803-7.
|
13. |
Choi W, Kim YH, Woo SM, et al. Establishment of patient-derived organoids using ascitic or pleural fluid from cancer patients. Cancer Res Treat, 2023, 55(4): 1077-1086.
|
14. |
Gan Z, Qin X, Liu H, et al. Recent advances in defined hydrogels in organoid research. Bioact Mater, 2023, 28: 386-401.
|
15. |
Kozlowski MT, Zook HN, Chigumba DN, et al. A Matrigel-free method for culture of pancreatic endocrine-like cells in defined protein-based hydrogels. Front Bioeng Biotechnol, 2023, 11: 1144209. doi: 10.3389/fbioe.2023.1144209.
|
16. |
Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol, 2021, 4(1): 1387. doi: 10.1038/s42003-021-02910-8.
|
17. |
Broguiere N, Isenmann L, Hirt C, et al. Growth of epithelial organoids in a defined hydrogel. Adv Mater, 2018, 30(43): e1801621. doi: 10.1002/adma.201801621.
|
18. |
Capeling MM, Huang S, Childs CJ, et al. Suspension culture promotes serosal mesothelial development in human intestinal organoids. Cell Rep, 2022, 38(7): 110379. doi: 10.1016/j.celrep.2022.110379.
|
19. |
Kumar SV, Er PX, Lawlor KT, et al. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development, 2019, 146(5): dev172361. doi: 10.1242/dev.172361.
|