Citation: 赵宏, 余勤. . Chinese Journal of Respiratory and Critical Care Medicine, 2017, 16(1): 84-87. doi: 10.7507/1671-6205.201607009 Copy
1. | Pamidi S, Tasali E. Obstructive sleep apnea and type 2 diabetes: is there a link?. Front Neurol, 2012, 3(1): 126. |
2. | Alshaarawy O, Teppala S, Shankar A. Markers of sleep-disordered breathing and prediabetes in US adults. Int J Endocrinol, 2012, 2012(5): 74-82. |
3. | Lindberg E, Theorell-Haglow J, Svensson M, et al. Sleep apnea and glucose metabolism: a long-term follow-up in a community-based sample. Chest, 2012, 142(4): 935-942. |
4. | Aurora RN, Punjabi NM. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir Med, 2013, 1(4): 329-338. |
5. | Aronsohn RS, Whitmore H, Van Cauter E, et al. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am J Respir Crit Care Med, 2010, 181(5): 507-513. |
6. | Kendzerska T, Gershon AS, Hawker G, et al. Obstructive sleep apnea and incident diabetes. A historical cohort study. Am J Respir Crit Care Med, 2014, 190(2): 218-225. |
7. | Schober AK, Neurath MF, Harsch IA. Prevalence of sleep apnoea in diabetic patients. Clin Respir J, 2011, 5(3): 165-172. |
8. | Tahrani AA, Ali A, Raymond NT, et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med, 2012, 186(5): 434-441. |
9. | Ahmed SB, Ronksley PE, Hemmelgarn BR, et al. Nocturnalhypoxia and loss of kidney function. PLoS One, 2011, 6(4): e19029. |
10. | Nicholl DD, Ahmed SB, Loewen AH, et al. Declining kidney function increases the prevalence of sleep apnea and nocturnal hypoxia. Chest, 2012, 141(6): 1422-1430. |
11. | Kanbay A, Buyukoglan H, Ozdogan N, et al. Obstructive sleep apnea syndrome is related to the progression of chronic kidney disease. Int Urol Nephrol, 2012, 44(2): 535-539. |
12. | Chou YT, Lee PH, Yang CT, et al. Obstructive sleep apnea: a stand-alone risk factor for chronic kidney disease. Nephrol Dial Transplant, 2011, 26(7): 2244-2250. |
13. | Shiba T, Maeno T, Saishin Y, et al. Nocturnal intermittent serious hypoxia and reoxygenation in proliferative diabetic retinopathy cases. Am J Ophthalmol, 2010, 149(6): 959-963. |
14. | West SD, Groves DC, Lipinski HJ, et al. The prevalence of retinopathy in men with Type 2 diabetes and obstructive sleep apnoea. Diabet Med, 2010, 27(4): 423-430. |
15. | Kosseifi S, Bailey B, Price R, et al. The association between obstructive sleep apnea syndrome and microvascular complications in well-controlled diabetic patients. Mil Med, 2010, 175(11): 913-916. |
16. | Mason RH, Kiire CA, Roves DC, et al. Visual improvement following continuous positive airway pressure therapy in diabetic subjects with clinically significant macular edema and obstructive sleep apnea, proof of principle study. Respiration, 2012, 84(4): 275-282. |
17. | Rosa DP, Martinez D, Picada JN, et al. Hepatic oxidative stress in an animal model of sleep apnoea: effects of different duration of exposure. Comp Hepatol, 2011, 10(1): 1. |
18. | Chen XY, Zeng YM, Zhang YX, et al. Effect of chronic intermittent hypoxia on theophylline metabolism in mouse liver. Chin Med J (Engl), 2013, 126(1): 118-123. |
19. | Iiyori N, Alonso LC, Li J, et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med, 2007, 175(8): 851-857. |
20. | Wang N, Khan SA, Prabhakar NR, et al. Impairment of pancreatic beta-cell function by chronic intermittent hypoxia. Exp Physiol, 2013, 98(9): 1376-1385. |
21. | Louis M, Punjabi NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol, 2009, 106(5): 1538-1544. |
22. | Broussard J, Brady MJ. The impact of sleep disturbances on adipocyte function and lipid metabolism. Best Pract Res Clin Endocrinol Metab, 2010, 24(5): 763-773. |
23. | Somers VK, Dyken ME, Mark AL, et al. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med, 1993, 328(5): 303-307. |
24. | Yi CX, La Fleur SE, Fliers E, et al. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta, 2010, 1802(4): 416-431. |
25. | Lambert GW, Straznicky NE, Lambert EA, et al. Sympathetic nervous activation in obesity and the metabolic syndrome-causes, consequences and therapeutic implications. Pharmacol Ther, 2010, 126(2): 159-172. |
26. | Karaca Z, Ismailogullari S, Korkmaz S, et al. Obstructive sleep apnoea syndrome is associated with relative hypocortisolemia and decreased hypothalamo-pituitary-adrenal axis response to 1 and 250μg ACTH and glucagon stimulation tests. Sleep Med, 2013, 14(2): 160-164. |
27. | Leproult R, Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev, 2010, 17: 11-21. |
28. | Vannucci L, Luciani P, Gagliardi E, et al. Assessment of sleep apnea syndrome in treated acromegalic patients and correlation of its severity with clinical and laboratory parameters. J Endocrinol Invest, 2013, 36(4): 237-242. |
29. | 孟炜丽, 连赫宇, 郭兮恒. 阻塞性睡眠呼吸暂停低通气综合征与糖代谢改变及机制探讨. 中国现代医生, 2010, 48(17): 5-8. |
30. | Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp (Warsz) , 2013, 61(2): 119-125. |
31. | Herzog N, Jauch-Chara K, Hyzy F, et al. Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men. Psychoneuroendocrinology, 2013, 38(10): 2075-2082. |
32. | Gharib SA, Khalyfa A, Abdelkarim A, et al. Integrative miRNA-mRNA profiling of adipose tissue unravels transcriptional circuits induced by sleep fragmentation. PLoS One, 2012, 7(5): e37669. |
33. | Khalyfa A, Wang Y, Zhang SX, et al. Sleep fragmentation in mice induces nicotinamide adenine dinucleotide phosphate oxidase 2-dependent mobilization, proliferation, and differentiation of adipocyte progenitors in visceral white adipose tissue. Sleep, 2014, 37(5): 999-1009. |
34. | Hursel R, Rutters F, Gonnissen HK, et al. Effects of sleep fragmentation in healthy men on energy expenditure, substrate oxidation, physical activity, and exhaustion measured over 48 h in a respiratory chamber. Am J Clin Nutr, 2011, 94(3): 804-808. |
35. | Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann N Y Acad Sci, 2014, 1311(1): 151-173. |
36. | Sivam S, Phillips CL, Trenell MI, et al. Effects of 8 weeks of continuous positive airway pressure on abdominal adiposity in obstructive sleep apnoea. Eur Respir J, 2012, 40(4): 913-918. |
37. | Henley DE, Buchanan F, Gibson R, et al. Plasma apelin levels in obstructive sleep apnea and the effect of continuous positive airway pressure therapy. J Endocrinol, 2009, 203(1): 181-188. |
38. | Hoyos CM, Killick R, Yee BJ, et al. Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study. Thorax, 2012, 67(12): 1081-1089. |
39. | Lam JC, Lam B, Yao TJ, et al. A randomised controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea. Eur Respir J, 2010, 35(1): 138-145. |
40. | Yang D, Liu Z, Yang H. The impact of effective continuous positive airway pressure on homeostasis model assessment insulin resistance in non-diabetic patients with moderate to severe obstructive sleep apnea. Diabetes Metab Res Rev, 2012, 28(6): 499-504. |
41. | Iftikhar IH, Khan MF, Das A, et al. Meta-analysis: continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. Ann Am Thorac Soc, 2013, 10(2): 115-120. |
42. | Garcia JM, Sharafkhaneh H, Hirshkowitz M, et al. Weight and metabolic effects of CPAP in obstructive sleep apnea patients with obesity. Respir Res, 2011, 12(1): 80. |
43. | Gallegos L, Dharia T, Gadegbeku AB. Effect of continuous positive airway pressure on type 2 diabetes mellitus and glucose metabolism. Hosp Pract(1995), 2014, 42(2): 31-37. |
44. | Shpirer I, Rapoport MJ, Stav D, et al. Normal and elevated HbA1C levels correlate with severity of hypoxemia in patients with obstructive sleep apnea and decrease following CPAP treatment. Sleep Breath, 2012, 16(2): 461-466. |
45. | Myhill PC, Davis WA, Peters KE, et al. Effect of continuous positive airway pressure therapy on cardiovascular risk factors in patients with type 2 diabetes and obstructive sleep apnea. J Clin Endocrinol Metab, 2012, 97(11): 4212-4218. |
- 1. Pamidi S, Tasali E. Obstructive sleep apnea and type 2 diabetes: is there a link?. Front Neurol, 2012, 3(1): 126.
- 2. Alshaarawy O, Teppala S, Shankar A. Markers of sleep-disordered breathing and prediabetes in US adults. Int J Endocrinol, 2012, 2012(5): 74-82.
- 3. Lindberg E, Theorell-Haglow J, Svensson M, et al. Sleep apnea and glucose metabolism: a long-term follow-up in a community-based sample. Chest, 2012, 142(4): 935-942.
- 4. Aurora RN, Punjabi NM. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir Med, 2013, 1(4): 329-338.
- 5. Aronsohn RS, Whitmore H, Van Cauter E, et al. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am J Respir Crit Care Med, 2010, 181(5): 507-513.
- 6. Kendzerska T, Gershon AS, Hawker G, et al. Obstructive sleep apnea and incident diabetes. A historical cohort study. Am J Respir Crit Care Med, 2014, 190(2): 218-225.
- 7. Schober AK, Neurath MF, Harsch IA. Prevalence of sleep apnoea in diabetic patients. Clin Respir J, 2011, 5(3): 165-172.
- 8. Tahrani AA, Ali A, Raymond NT, et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med, 2012, 186(5): 434-441.
- 9. Ahmed SB, Ronksley PE, Hemmelgarn BR, et al. Nocturnalhypoxia and loss of kidney function. PLoS One, 2011, 6(4): e19029.
- 10. Nicholl DD, Ahmed SB, Loewen AH, et al. Declining kidney function increases the prevalence of sleep apnea and nocturnal hypoxia. Chest, 2012, 141(6): 1422-1430.
- 11. Kanbay A, Buyukoglan H, Ozdogan N, et al. Obstructive sleep apnea syndrome is related to the progression of chronic kidney disease. Int Urol Nephrol, 2012, 44(2): 535-539.
- 12. Chou YT, Lee PH, Yang CT, et al. Obstructive sleep apnea: a stand-alone risk factor for chronic kidney disease. Nephrol Dial Transplant, 2011, 26(7): 2244-2250.
- 13. Shiba T, Maeno T, Saishin Y, et al. Nocturnal intermittent serious hypoxia and reoxygenation in proliferative diabetic retinopathy cases. Am J Ophthalmol, 2010, 149(6): 959-963.
- 14. West SD, Groves DC, Lipinski HJ, et al. The prevalence of retinopathy in men with Type 2 diabetes and obstructive sleep apnoea. Diabet Med, 2010, 27(4): 423-430.
- 15. Kosseifi S, Bailey B, Price R, et al. The association between obstructive sleep apnea syndrome and microvascular complications in well-controlled diabetic patients. Mil Med, 2010, 175(11): 913-916.
- 16. Mason RH, Kiire CA, Roves DC, et al. Visual improvement following continuous positive airway pressure therapy in diabetic subjects with clinically significant macular edema and obstructive sleep apnea, proof of principle study. Respiration, 2012, 84(4): 275-282.
- 17. Rosa DP, Martinez D, Picada JN, et al. Hepatic oxidative stress in an animal model of sleep apnoea: effects of different duration of exposure. Comp Hepatol, 2011, 10(1): 1.
- 18. Chen XY, Zeng YM, Zhang YX, et al. Effect of chronic intermittent hypoxia on theophylline metabolism in mouse liver. Chin Med J (Engl), 2013, 126(1): 118-123.
- 19. Iiyori N, Alonso LC, Li J, et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med, 2007, 175(8): 851-857.
- 20. Wang N, Khan SA, Prabhakar NR, et al. Impairment of pancreatic beta-cell function by chronic intermittent hypoxia. Exp Physiol, 2013, 98(9): 1376-1385.
- 21. Louis M, Punjabi NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol, 2009, 106(5): 1538-1544.
- 22. Broussard J, Brady MJ. The impact of sleep disturbances on adipocyte function and lipid metabolism. Best Pract Res Clin Endocrinol Metab, 2010, 24(5): 763-773.
- 23. Somers VK, Dyken ME, Mark AL, et al. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med, 1993, 328(5): 303-307.
- 24. Yi CX, La Fleur SE, Fliers E, et al. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta, 2010, 1802(4): 416-431.
- 25. Lambert GW, Straznicky NE, Lambert EA, et al. Sympathetic nervous activation in obesity and the metabolic syndrome-causes, consequences and therapeutic implications. Pharmacol Ther, 2010, 126(2): 159-172.
- 26. Karaca Z, Ismailogullari S, Korkmaz S, et al. Obstructive sleep apnoea syndrome is associated with relative hypocortisolemia and decreased hypothalamo-pituitary-adrenal axis response to 1 and 250μg ACTH and glucagon stimulation tests. Sleep Med, 2013, 14(2): 160-164.
- 27. Leproult R, Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev, 2010, 17: 11-21.
- 28. Vannucci L, Luciani P, Gagliardi E, et al. Assessment of sleep apnea syndrome in treated acromegalic patients and correlation of its severity with clinical and laboratory parameters. J Endocrinol Invest, 2013, 36(4): 237-242.
- 29. 孟炜丽, 连赫宇, 郭兮恒. 阻塞性睡眠呼吸暂停低通气综合征与糖代谢改变及机制探讨. 中国现代医生, 2010, 48(17): 5-8.
- 30. Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp (Warsz) , 2013, 61(2): 119-125.
- 31. Herzog N, Jauch-Chara K, Hyzy F, et al. Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men. Psychoneuroendocrinology, 2013, 38(10): 2075-2082.
- 32. Gharib SA, Khalyfa A, Abdelkarim A, et al. Integrative miRNA-mRNA profiling of adipose tissue unravels transcriptional circuits induced by sleep fragmentation. PLoS One, 2012, 7(5): e37669.
- 33. Khalyfa A, Wang Y, Zhang SX, et al. Sleep fragmentation in mice induces nicotinamide adenine dinucleotide phosphate oxidase 2-dependent mobilization, proliferation, and differentiation of adipocyte progenitors in visceral white adipose tissue. Sleep, 2014, 37(5): 999-1009.
- 34. Hursel R, Rutters F, Gonnissen HK, et al. Effects of sleep fragmentation in healthy men on energy expenditure, substrate oxidation, physical activity, and exhaustion measured over 48 h in a respiratory chamber. Am J Clin Nutr, 2011, 94(3): 804-808.
- 35. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann N Y Acad Sci, 2014, 1311(1): 151-173.
- 36. Sivam S, Phillips CL, Trenell MI, et al. Effects of 8 weeks of continuous positive airway pressure on abdominal adiposity in obstructive sleep apnoea. Eur Respir J, 2012, 40(4): 913-918.
- 37. Henley DE, Buchanan F, Gibson R, et al. Plasma apelin levels in obstructive sleep apnea and the effect of continuous positive airway pressure therapy. J Endocrinol, 2009, 203(1): 181-188.
- 38. Hoyos CM, Killick R, Yee BJ, et al. Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study. Thorax, 2012, 67(12): 1081-1089.
- 39. Lam JC, Lam B, Yao TJ, et al. A randomised controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea. Eur Respir J, 2010, 35(1): 138-145.
- 40. Yang D, Liu Z, Yang H. The impact of effective continuous positive airway pressure on homeostasis model assessment insulin resistance in non-diabetic patients with moderate to severe obstructive sleep apnea. Diabetes Metab Res Rev, 2012, 28(6): 499-504.
- 41. Iftikhar IH, Khan MF, Das A, et al. Meta-analysis: continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. Ann Am Thorac Soc, 2013, 10(2): 115-120.
- 42. Garcia JM, Sharafkhaneh H, Hirshkowitz M, et al. Weight and metabolic effects of CPAP in obstructive sleep apnea patients with obesity. Respir Res, 2011, 12(1): 80.
- 43. Gallegos L, Dharia T, Gadegbeku AB. Effect of continuous positive airway pressure on type 2 diabetes mellitus and glucose metabolism. Hosp Pract(1995), 2014, 42(2): 31-37.
- 44. Shpirer I, Rapoport MJ, Stav D, et al. Normal and elevated HbA1C levels correlate with severity of hypoxemia in patients with obstructive sleep apnea and decrease following CPAP treatment. Sleep Breath, 2012, 16(2): 461-466.
- 45. Myhill PC, Davis WA, Peters KE, et al. Effect of continuous positive airway pressure therapy on cardiovascular risk factors in patients with type 2 diabetes and obstructive sleep apnea. J Clin Endocrinol Metab, 2012, 97(11): 4212-4218.