1. |
Bousquet J, Jeffery PK, Busse WW, et al. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med, 2000, 161(5): 1720-1745.
|
2. |
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5): 871-890.
|
3. |
Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006, 172(7): 973-981.
|
4. |
Sohal SS, Walters EH. Role of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD). Respir Res, 2013, 14: 120.
|
5. |
Nowrin K, Sohal SS, Peterson G, et al. Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev Respir Med, 2014, 8(5): 547-559.
|
6. |
Heijink IH, Postma DS, Noordhoek JA, et al. House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium. Am J Respir Cell Mol Biol, 2010, 42(1): 69-79.
|
7. |
Haynes J, Srivastava J, Madson N, et al. Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell, 2011, 22(24): 4750-4764.
|
8. |
Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol, 2010, 11(4): 276-287.
|
9. |
Moleirinho S, Tilston-Lunel A, Angus L, et al. The expanding family of FERM proteins. Biochem J, 2013, 452(2): 183-193.
|
10. |
Valderrama F, Thevapala S, Ridley AJ. Radixin regulates cell migration and cell-cell adhesion through Rac1. J Cell Sci, 2012, 125(Pt 14): 3310-3319.
|
11. |
Chiappetta C, Leopizzi M, Censi F, et al. Correlation of the Rac1/RhoA pathway with ezrin expression in osteosarcoma. Appl Immunohistochem Mol Morphol, 2014, 22(3): 162-170.
|
12. |
Arumugam P, Partelli S, Coleman SJ, et al. Ezrin expression is an independent prognostic factor in gastro-intestinal cancers. J Gastrointest Surg, 2013, 17(12): 2082-2091.
|
13. |
Kong J, Li Y, Liu S, et al. High expression of ezrin predicts poor prognosis in uterine cervical cancer. BMC Cancer, 2013, 13: 520.
|
14. |
Leiphrakpam PD, Rajput A, Mathiesen M, et al. Ezrin expression and cell survival regulation in colorectal cancer. Cell Signal, 2014, 26(5): 868-879.
|
15. |
Ren L, Hong SH, Cassavaugh J, et al. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene, 2009, 28(6): 792-802.
|
16. |
Bretscher A. Purification of an 80, 000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol, 1983, 97(2): 425-432.
|
17. |
Xie JJ, Zhang FR, Tao LH, et al. Expression of ezrin in human embryonic, fetal, and normal adult tissues. J Histochem Cytochem, 2011, 59(11): 1001-1008.
|
18. |
Bonilha VL. Focus on molecules: ezrin. Exp Eye Res, 2007, 84(4): 613-614.
|
19. |
Berryman M, Franck Z, Bretscher A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci, 1993, 105(Pt 4): 1025-1043.
|
20. |
Mangeat P, Roy C, Martin M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol, 1999, 9(5): 187-192.
|
21. |
Di Cristofano C, Leopizzi M, Miraglia A, et al. Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Mod Pathol, 2010, 23(7): 1012-1020.
|
22. |
Sarrió D, Rodríguez-Pinilla SM, Dotor A, et al. Abnormal ezrin localization is associated with clinicopathological features in invasive breast carcinomas. Breast Cancer Res Treat, 2006, 98(1): 71-79.
|
23. |
Tokunou M, Niki T, Saitoh Y, et al. Altered expression of the ERM proteins in lung adenocarcinoma. Lab Invest, 2000, 80(11): 1643-1650.
|
24. |
Chaw SY, Majeed AA, Dalley AJ, et al. Epithelial to mesenchymal transition (EMT) biomarkers--E-cadherin, beta-catenin, APC and Vimentin--in oral squamous cell carcinogenesis and transformation. Oral Oncol, 2012, 48(10): 997-1006.
|
25. |
Araki K, Ebata T, Guo AK, et al. p53 regulates cytoskeleton remodeling to suppress tumor progression. Cell Mol Life Sci, 2015, 72(21): 4077-4094.
|
26. |
McVicker CG, Leung SY, Kanabar V, et al. Repeated allergen inhalation induces cytoskeletal remodeling in smooth muscle from rat bronchioles. Am J Respir Cell Mol Biol, 2007, 36(6): 721-727.
|
27. |
Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol, 2003, 5(8): 711-719.
|
28. |
Aubert JD, Dalal BI, Bai TR, et al. Transforming growth factor β1 gene expression in human airways. Thorax, 1994, 49(3): 225-232.
|
29. |
Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene, 2005, 24(37): 5764-5774.
|
30. |
Vega G, Alarcón S, San Martín R. The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis. Cytokine, 2016, 88: 115-125.
|
31. |
O'Connor JW, Riley PN, Nalluri SM, et al. Matrix rigidity mediates TGFβ1-induced epithelial-myofibroblast transition by controlling cytoskeletal organization and MRTF-A localization. J Cell Physiol, 2015, 230(8): 1829-1839.
|
32. |
Chen MJ, Gao XJ, Xu LN, et al. Ezrin is required for epithelial-mesenchymal transition induced by TGF-β 1 in A549 cells. Int J Oncol, 2014, 45(4): 1515-1522.
|
33. |
Mani SA, Guo W, Liao MJ, The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4): 704-715.
|
34. |
Phanish MK, Wahab NA, Colville-Nash P, et al. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFβ1 responses in human proximal-tubule epithelial cells. Biochem J, 2006, 393(Pt 2): 601-607.
|
35. |
Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol, 2016, 9(2): a022129.
|
36. |
Lee J, Moon HJ, Lee JM, et al. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-β-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem, 2010, 285(34): 26618-26627.
|
37. |
Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science, 2005, 307(5715): 1603-1609.
|