1. |
Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol, 2015, 16(1): 45-56.
|
2. |
Kujur W, Gurram RK, Haleem N, et al. Caerulomycin A inhibits Th2 cell activity: a possible role in the management of asthma. Sci Rep, 2015, 5: 15396.
|
3. |
梁振宇, 蔡绍曦, 赵海金. 哮喘的临床与炎症表型. 中国呼吸与危重监护杂志, 2010, 9(5): 546-548.0.
|
4. |
Newcomb DC, Peebles RS Jr. Th17-mediated inflammation in asthma. Curr Opin Immunol, 2013, 25(6): 755-760.
|
5. |
李贱, 邹朋成, 杨莉容等. Th17 细胞在哮喘发病中的作用研究进展. 中国呼吸与危重监护杂志, 2013, 12(3): 322-324.0.
|
6. |
Kudo M, Melton AC, Chen C, et al. IL-17A produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat Med, 2012, 18(4): 547-554.
|
7. |
Lajoie S, Lewkowich IP, Suzuki Y, et al. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol, 2010, 11(10): 928-935.
|
8. |
Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx?. Respir Res, 2006, 7: 135.
|
9. |
Finkelman FD, Hogan SP, Hershey GK, et al. Importance of cytokines in murine allergic airway disease and human asthma. J Immunol, 2010, 184(4): 1663-1674.
|
10. |
Ma C, Ma Z, Fu Q, et al. Curcumin attenuates allergic airway inflammation by regulation of CD4+CD25+ regulatory T cells (Tregs) /Th17 balance in ovalbumin-sensitized mice. Fitoterapia, 2013, 87: 57-64.
|
11. |
Park BS, Hong GU, Ro JY. Foxp3(+)-Treg cells enhanced by repeated low-dose gamma-irradiation attenuate ovalbumin-induced allergic asthma in mice. Radiat Res, 2013, 179(5): 570-583.
|
12. |
周辰, 陈军浩, 殷凯生. 辅助性 T 细胞 17 和调节性 T 细胞在哮喘小鼠中的失衡表达及其意义. 中国呼吸与危重监护杂志, 2010, 9(1): 28-31.0.
|
13. |
Berod L, Friedrich C, Nandan A, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med, 2014, 20(11): 1327-1333.
|
14. |
Yoshioka M, Sagara H, Takahashi F, et al. Role of multidrug resistance-associated protein 1 in the pathogenesis of allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol, 2009, 296(1): L30-L36.
|
15. |
Svensson RU, Parker SJ, Eichner LJ, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med, 2016, 22(10): 1108-1119.
|
16. |
Rodrigues HG, Takeo Sato F, Curi R, et al. Fatty acids as modulators of neutrophil recruitment, function and survival. Eur J Pharmacol, 2016, 785: 50-58.
|
17. |
Rehman A, Hemmert KC, Ochi A, et al. Role of fatty-acid synthesis in dendritic cell generation and function. J Immunol, 2013, 190(9): 4640-4649.
|
18. |
Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol, 2015, 36(2): 81-91.
|
19. |
Moon JS, Lee S, Park MA, et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J Clin Invest, 2015, 125(2): 665-680.
|
20. |
Endo Y, Asou HK, Matsugae N, et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep, 2015, 12(6): 1042-1055.
|
21. |
Ano S, Morishima Y, Ishii Y, et al. Transcription factors GATA-3 and RORgammat are important for determining the phenotype of allergic airway inflammation in a murine model of asthma. J Immunol, 2013, 190(3): 1056-1065.
|
22. |
Chesne J, Braza F, Mahay G, et al. IL-17 in severe asthma. Where do we stand?. Am J Respir Crit Care Med, 2014, 190(10): 1094-1101.
|
23. |
Zhao Y, Yang J, Gao YD, et al. Th17 immunity in patients with allergic asthma. Int Arch Allergy Immunol, 2010, 151(4): 297-307.
|