1. |
Li P, Xin J, Wang Y, Li G, et al. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City. Environ Sci Pollut Res Int, 2015, 22(1): 358-368.
|
2. |
Thurston GD, Ahn J, Cromar KR, et al. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ Health Perspect, 2016, 124(4): 484-490.
|
3. |
Guan WJ, Zheng XY, Chung KF, et al. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet, 2016, 15;388(10054): 1939-1951.
|
4. |
Turner MC, Krewski D, Pope CA 3rd, et al. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am J Respir Crit Care Med, 2011, 15;184(12): 1374-1381.
|
5. |
Fisher JA, Puett RC, Hart JE, et al. Particulate matter exposures and adult-onset asthma and COPD in the Nurses' Health Study. Eur Respir J, 2016, 48(3): 921-924.
|
6. |
Liu S, Zhou Y, Liu S, et al. Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax, 2017, 72(9): 788-795.
|
7. |
Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax, 2007, 62(10): 889-897.
|
8. |
Zhou Y, Zou Y, LiX, et al. Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. PLoS Med, 2014, 11(3): e1001621.
|
9. |
Gangamma S. Airborne particulate matter and acute lung inflammation. Environ Health Perspect, 2013, 121(1): A11.
|
10. |
Jaligama S, Chen Z, Saravia J, et al. Exposure to Deepwater horizon crude oil Burnoff particulate matter induces pulmonary inflammation and alters adaptive immune response. Environ Sci Technol, 2015, 21;49(14): 8769-8776.
|
11. |
Ramanathan M Jr, London NR Jr, Tharakan A, et al. Airborne particulate matter induces non-allergic Eosinophilic Sinonasal inflammation in mice. Am J Respir Cell Mol Biol, 2017, 57(1): 59-65.
|
12. |
He F, Liao B, Pu J, et al. Exposure to ambient particulate matter induced COPD in a rat model and a description of the underlying mechanism. Sci Rep, 2017, 7: 45666.
|
13. |
Adar SD, Huffnagle GB, Curtis JL. The respiratory microbiome: an underappreciated player in the human response to inhaled pollutants? Ann Epidemiol, 2016, 26(5): 355-359.
|
14. |
Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One, 2010, 5(1): e8578.
|
15. |
Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the " healthy” smoker and in COPD. PLoS One, 2011, 6(2): e16384.
|
16. |
Sze MA, Dimitriu PA, Suzuki M, et al. Host Response to the Lung Microbiome in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2015, 192(4): 438-445.
|
17. |
Rangelov K, Sethi S. Role of infections. Clin Chest Med, 2014, 35(1): 87-100.
|
18. |
Sze MA, Dimitriu PA, Hayashi S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2012, 185(10): 1073-1080.
|
19. |
Cabrera-Rubio R, Garcia-Nunez M, Seto L, et al. Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol, 2012, 50(11): 3562-3568.
|
20. |
Galiana A, Aguirre E, Rodriguez JC, et al. Sputum microbiota in moderate versus severe patients with COPD. Eur Respir J, 2014, 43(6): 1787-1790.
|
21. |
Garcia-Nunez M, Millares L, Pomares X, et al. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol, 2014, 52(12): 4217-4223.
|
22. |
Molyneaux PL, Mallia P, Cox MJ, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2013, 188(10): 1224-1231.
|
23. |
Wang Z, Bafadhel M, Haldar K, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J, 2016, 47(4): 1082-1092.
|
24. |
Huang YJ, Sethi S, Murphy T, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol, 2014, 52(8): 2813-2823.
|
25. |
Yu G, Gail MH, Consonni D, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol, 2016, 17(1): 163.
|
26. |
Rylance J, Kankwatira A, Nelson DE, et al. Household air pollution and the lung microbiome of healthy adults in Malawi: a cross-sectional study. BMC Microbiol, 2016, 16(1): 182.
|
27. |
Li N, He F, Liao B, et al. Exposure to ambient particulate matter alters the microbial composition and induces immune changes in rat lung. Respir Res, 2017, 18(1): 143.
|
28. |
USEPA. Integrated Science Assessment for Particulate Matter. Research Tri- angle Park, NC: NCEA-RTP Office; 2009. EPA/600/R-08/139F.
|
29. |
Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med, 2008, 359(22): 2355-2365.
|
30. |
Garmendia J, Morey P, Bengoechea JA. Impact of cigarette smoke exposure on host–bacterial pathogen interactions. Eur Respir J, 2012, 39(2): 467-477.
|
31. |
Barnes PJ. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev, 2004, 56(4): 515-548.
|
32. |
Miyata R, van Eeden SF. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol, 2011, 257(2): 209-226.
|
33. |
Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut, 2016, 65(4): 575-583.
|
34. |
Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc, 2015, 12 Suppl 2: S150-S156.
|
35. |
Young RP; Hopkins RJ; Marsland B. The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol, 2016, 54(2): 161-169.
|
36. |
Bazett M, Biala A, Huff RD, et al. Attenuating immune pathology using a microbial-based intervention in a mouse model of cigarette smoke-induced lung inflammation. Respir Res, 2017, 18(1): 92.
|
37. |
De Brouwere K, Buekers J, Cornelis C, et al. Assessment of indirect human exposure to environmental sources of nickel: oral exposure and risk characterization for systemic effects. Sci Total Environ, 2012, 419: 25-36.
|
38. |
Benjamin JL, Hedin CR, Koutsoumpas A, et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis, 2012, 18(6): 1092-1010.
|
39. |
Kish L, Hotte N, Kaplan GG, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One, 2013, 8(4): e62220.
|
40. |
Allais L, Kerckhof FM, Verschuere S, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol, 2016, 18(5): 1352-1363.
|
41. |
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol, 2017, 15(1): 55-63.
|
42. |
Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes, 2014, 5(2): 215-219.
|