1. |
Global initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease 2017 report[EB/OL]. http://www.goldcopd.org.
|
2. |
Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD.N Engl J Med, 2011, 365(8): 689-698.
|
3. |
Uzun S, Djamin RS, Kluytmans JA, et al. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial.Lancet Respir Med, 2014, 2(5): 361-368.
|
4. |
Han MK, Tayob N, Murray S, et al. Predictors of chronic obstructive pulmonary disease exacerbation reduction in response to daily azithromycin therapy.Am J Respir Crit Care Med, 2014, 189(12): 1503-1508.
|
5. |
Poachanukoon O, Koontongaew S, Monthanapisut P, et al. Macrolides attenuate phorbolester-induced tumor necrosis factor alpha and mucin production from human airway epithelial cells.Pharmacology, 2014, 93(2): 92-99.
|
6. |
Cramer CL, Patterson A, Alchakaki A. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician.Postgrad Med, 2017, 129(5): 493-499.
|
7. |
Willems-Widyastuti A, Vanaudenaerde BM, Vos R, et al. Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys, 2013, 67(2): 331-339.
|
8. |
Miao L, Gao Z, Huang F, et al. Erythromycin enhances the anti-inflammatory activity of budesonide in COPD rat mode. Int J Clin Exp Med, 2015, 8(12): 22217-22226.
|
9. |
Wang Z. Pulmonary vascular mechanics: important contributors to the increased right ventricular afterload of pulmonary hypertension. Exp Physiol, 2013, 98(8): 1267-1273.
|
10. |
Sakao S, Voelkel NF. The vascular bed in COPD: pulmonary hypertension and pulmonary vascular alterations. Eur Respir Rev, 2014, 23(133): 350-355.
|
11. |
张伟, 谷明明, 孙璐璐, 等. COPD 大鼠肺血管重构与气管重塑的实验研究. 安徽医科大学学报, 2013, 48 (3): 245-248.
|
12. |
Ramos FL, Criner GJ. Use of long-term macrolide therapy in chronic obstructive pulmonary disease. Curr Opin Pulm Med, 2014, 20(2): 153-158.
|
13. |
Porter JD, Watson J, Roberts LR, et al. Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. J Antimicrob Chemother, 2016, 79(10): 2767-2781.
|
14. |
Arfè A, Blasi F, Merlino L. Respiratory drugs and macrolides prevent asthma exacerbations: A real-world investigation. Respir Med, 2016, 119: 7-12.
|
15. |
郭彩霞. 阿奇霉素经 TLR-4/NF-κB 信号通路干预 COPD 大鼠炎症的机制研究. 重庆医学, 2016, 45(12): 1612-1615.
|
16. |
Hodge S, Hodge G, Holmes M, et al. Increased CD8 T-cell granzyme B in COPD is suppressed by treatment with low-dose azithromycin. Respirology, 2015, 20(1): 95-100.
|
17. |
Rosenberg M, Meyer FJ, Gruenig E, et al. Osteopontin (OPN) improves risk stratification in pulmonary hypertension (PH). Int J Cardiol, 2012, 155(3): 504-505.
|
18. |
Anwar A, Li M, Frid MG, et al. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2012, 303(1): L1-L11.
|
19. |
Liu J, Liu Q, Wan Y, et al. Osteopontin promotes the progression of gastric cancer through the NF-kappaB pathway regulated by the MAPK and PI3K. Int J Oncoll, 2014, 45(1): 282-90.
|
20. |
Seo KW, Lee SJ, Ye BH, et al. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol, 2015, 85: 13-24.
|