1. |
Dushianthan A, Grocott MP, Postle AD, et al. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J, 2011, 87(1031): 612-622.
|
2. |
韩李念, 陈旭林. 巨噬细胞在急性肺损伤的作用. 中华损伤与修复杂志(电子版), 2016, 11(4): 294-297.
|
3. |
马晓春, 王辰, 方强, 等. 急性肺损伤/急性呼吸窘迫综合征诊断和治疗指南(2006). 中华危重病急救医学, 2006, 16(12): 1-6.
|
4. |
任志慧, 章志丹, 穆恩, 等. 急性肺损伤/急性呼吸窘迫综合征的流行病学调查分析. 中华医学会第五次全国重症医学大会论文汇编, 2011.
|
5. |
钱桂生. 急性肺损伤和急性呼吸窘迫综合征的诊断与治疗. 解放军医学杂志, 2009, 34(4): 371-373.
|
6. |
Liu Q, Li W, Zeng QS, et al. Lung stress and strain during mechanical ventilation in animals with and without pulmonary acute respiratory distress syndrome. J Surg Res, 2013, 181(2): 300-307.
|
7. |
Ricard JD, Dreyfuss D, Saumon G. Ventilator-induced lung injury. Curr Opin Crit Care, 2013, 369(22): 2126-2136.
|
8. |
张伟, 蒋耀光, 李磊. 肺泡巨噬细胞与急性肺损伤. 创伤外科杂志, 2003, 5(5): 389-391.
|
9. |
Serhan CN, Nan C, Dyke TEV. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol, 2008, 8(5): 349-361.
|
10. |
Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science, 2001, 294(5548): 1871-1875.
|
11. |
张蓉, 章怡苇, 汪燕, 等. 脂氧素在急性肺损伤中作用及机制的研究进展. 上海交通大学学报(医学版), 2016, 36(6): 926-929.
|
12. |
Nan C, Serhan CN, Dahlén SE, et al. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev, 2006, 58(3): 463-487.
|
13. |
Maderna P, Cottell DC, Berlasconi G, et al. Lipoxins induce actin reorganization in monocytes and macrophages but not in neutrophils: differential involvement of Rho GTPases. Am J Pathol, 2002, 160(6): 2275-2283.
|
14. |
Freire-De-Lima CG, Xiao YQ, Gardai SJ, et al. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem, 2006, 281(50): 38376-38384.
|
15. |
陶慧娴, 吴升华. 消散素与保护素. 生命的化学, 2009, 29(4): 604-608.
|
16. |
Arita M, Ohira T, Sun YP, et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol, 2007, 178(6): 3912-3917.
|
17. |
Schwab JM, Chiang N, Arita M, et al. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature, 2007, 447(7146): 869-874.
|
18. |
Williams A E, José RJ, Mercer PF, et al. Evidence for chemokine synergy during neutrophil migration in ARDS. Thorax, 2017, 72(1): 66-73.
|
19. |
刘相良, 原铭贞, 刘笑玎, 等. 趋化因子及其受体在急性肺损伤中作用的研究进展. 吉林大学学报(医学版), 2014(4): 908-912.
|
20. |
Romanini J, Mielcke TR, Leal PC, et al. The role of CXCR2 chemokine receptors in the oral squamous cell carcinoma. Invest New Drug, 2012, 30(4): 1371.
|
21. |
Konrad FM, Reutershan J. CXCR2 in acute lung injury. Mediators Inflamm, 2012: 740987.
|
22. |
Kuboki S, Shin T, Huber N, et al. Hepatocyte signaling through CXC chemokine receptor-2 is detrimental to liver recovery after ischemia/reperfusion in mice. Hepatology, 2008, 48(4): 1213-1223.
|
23. |
Herold S, Tabar TS, Janssen H, et al. Exudate macrophages attenuate lung injury by the release of IL-1 receptor antagonist in gram-negative pneumonia. Am J Respir Crit Care Med, 2011, 183(10): 1380-1390.
|
24. |
Cakarova L, Marsh LM, Wilhelm J, et al. Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte-macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am J Respir Crit Care Med, 2009, 180(6): 521-532.
|
25. |
Jm VDB, Weyer S, Weening JJ, et al. Divergent effects of tumor necrosis factor alpha on apoptosis of human neutrophils. J Leukoc Biol, 2001, 69(3): 467-473.
|
26. |
王炯, 黄维琳, 汪诚, 等. 巨噬细胞吞噬凋亡中性粒细胞及吞噬诱导巨噬细胞死亡的实时动态观察. 中国科学(生命科学), 2014, 44(6): 571-577.
|
27. |
Litvack ML, Palaniyar N. Review: Soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation. Innate Immun, 2010, 16(3): 191-200.
|
28. |
Voll RE, Herrmann M, Roth EA, et al. Immunosuppressive effects of apoptotic cells. Nature, 1997, 390(6658): 350-351.
|
29. |
Medeiros AI, Serezani CH, Sang PL, et al. Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J Exp Med, 2009, 206(1): 61-68.
|
30. |
Golpon HA, Fadok VA, Tarasevicienestewart L, et al. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. Faseb J, 2004, 18(14): 1716-1718.
|
31. |
Amano H, Morimoto K, Senba M, et al. Essential contribution of monocyte chemoattractant protein-1/C-C chemokine ligand-2 to resolution and repair processes in acute bacterial pneumonia. J Immunol, 2004, 172(1): 398-409.
|
32. |
Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest, 1998, 101(4): 890-898.
|
33. |
Patel VA, Longacre AK, Fan H, et al. Apoptotic cells, at all stages of the death process, trigger characteristic signaling events that are divergent from and dominant over those triggered by necrotic cells: implications for the delayed clearance model of autoimmunity. J Biol Chem, 2006, 281(8): 4663-4670.
|
34. |
童晓鹏, 门连超, 张群辉. 基于巨噬细胞可塑性的分类研究. 现代免疫学, 2016(2): 130-136.
|
35. |
屠国伟, 任杨华, 史懿, 等. 肺泡巨噬细胞亚型与急性肺损伤. 中国临床医学, 2017, 24(3): 470-475.
|
36. |
Serbina NV, Jia T, Hohl TM, et al. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol, 2008, 26(1): 421-452.
|
37. |
张硌, 王义武, 张令强, 等. 巨噬细胞极性及调控机制. 科学通报, 2012(28): 2661-2665.
|
38. |
Fleetwood AJ, Dinh H, Cook AD, et al. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol, 2009, 86(2): 411-421.
|
39. |
Zhang P, Zhou C, Cheng L, et al. PLEKHO2 is essential for M-CSF-dependent macrophage survival. Cell Signal, 2017, 37: 115.
|
40. |
卢惠伦, 刁振华, 陈培芬, 等. 肺泡巨噬细胞极化加剧内毒素性急性肺损伤的机制研究. 现代医院, 2017, 17(8): 1182-1185.
|
41. |
Xu H, Zhu J, Smith S, et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol, 2012, 13(7): 642.
|
42. |
Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrialtransfer. Am J Respir Crit Care Med, 2017, 196(10): 1275-1286.
|
43. |
孔祥歆, 刘卉芳, 陈凤玲. CaMKKβ 通过激活 AMPK/JAK2/STAT3 信号促进小鼠单核巨噬细胞向 M2 表型转换. 上海交通大学学报(医学版), 2017, 37(7): 914-923.
|
44. |
王保健, 毛旭. 槲皮素通过抑制肺巨噬细胞的 M1 极化减轻海水吸入诱导的小鼠急性肺损伤. 细胞与分子免疫学杂志, 2017, 33(6): 751-755.
|
45. |
Wissinger E, Goulding J, Hussell T. Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol, 2009, 21(3): 147-155.
|
46. |
Snelgrove RJ, Goulding J, Didierlaurent AM, et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol, 2008, 9(9): 1074.
|
47. |
Rock JR, Hogan BLM. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol, 2011, 27: 493-512.
|
48. |
Bosurgi L, Cao YG, Cabezacabrerizo M, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science, 2017, 356(6342): 1072-1076.
|
49. |
Ganter MT, Roux J, Miyazawa B, et al. Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circ Res, 2008, 102(7): 804-812.
|
50. |
Terakado M, Gon Y, Sekiyama A, et al. The Rac1/JNK pathway is critical for EGFR-dependent barrier formation in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2011, 300(1): L56-L63.
|
51. |
Tighe RM, Liang J, Liu N, et al. Recruited exudative macrophages selectively produce CXCL10 after noninfectious lung injury. Am J Respir Cell Mol biol, 2011, 45(4): 781-788.
|
52. |
张彦伟, 陈纯. 巨噬细胞参与肺纤维化的相关研究进展. 海峡药学, 2017, 29(5): 8-12.
|
53. |
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol, 2011, 11(11): 723-737.
|