1. |
Lee KY. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. Int J Mol Sci, 2017, 18(2): 388.
|
2. |
Seethala RR, Hou PC, Aisiku IP, et al. Early risk factors and the role of fluid administration in developing acute respiratory distress syndrome in septic patients. Ann Intensive Care, 2017, 7(1): 11.
|
3. |
Dinglas VD, Aronson Friedman L, Colantuoni E, et al. Muscle weakness and 5-year survival in acute respiratory distress syndrome survivors. Crit Care Med., 2017, 45(3): 446-453.
|
4. |
Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA, 2018, 319(7): 698-710.
|
5. |
林晓亮, 张建华. 卡介苗调控 OVA 诱导的哮喘小鼠 M-CSF、IL-12 表达的研究. 医学分子生物学杂志, 2019, 16(2): 169-173.
|
6. |
Li M, Zhang S, Wu N, et al. Overexpression of mir-499-5p inhibits non-small cell lung cancer proliferation and metastasis by targeting vav3. Sci Rep, 2016, 6(2): 3100.
|
7. |
Li Y, Lu J, Bao X, et al. Mir-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting pdcd4. Oncotarget, 2016, 7(24): 35607-35617.
|
8. |
施凯, 刘景全, 冯月娟, 等. 微小 RNA-320 检测在体外循环所致急性呼吸窘迫综合征中的临床价值及其机制研究. 中华危重症医学杂志, 2018, 11(1): 22-28.
|
9. |
Chao W, Deng JS, Huang SS, et al. 3,4-dihydroxybenzalacetone attenuates lipopolysaccharide-induced inflammation in acute lung injury via down-regulation of MMP-2 and MMP-9 activities through suppressing ROS-mediated MAPK and PI3K/AKT signaling pathways. Int Immunopharmacol, 2017, 50(2): 77-86.
|
10. |
Zhu G, Xin X, Liu Y, et al. Geraniin attenuates LPS-induced acute lung injury via inhibiting NF-κB and activating Nrf2 signaling pathways. Oncotarget, 2017, 8(14): 22835-22841.
|
11. |
Yun L, Zheng-Zhao L, Jian-Feng Z, et al. Microrna-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via nqo1 in sepsis-associated acute respiratory distress syndrome. Life Sci, 2018, 210(1): 1-8.
|
12. |
刘琳, 李涛平. 急性呼吸窘迫综合征大鼠肺泡Ⅱ型上皮细胞的超微结构观察. 第一军医大学学报, 2003, 23(7): 690-691, 695.
|
13. |
Umbrello M, Formenti P, Bolgiaghi L, et al. Current concepts of ARDS: a narrative review. Int J Mol Sci, 2017, 18(1): 64.
|
14. |
宋婷, 张青苗, 欧阳为相, 等. 妊娠期糖尿病胎鼠肺发育与 mTOR 关系的研究. 医学分子生物学杂志, 2018, 15(5): 289-294.
|
15. |
D'Alessio FR. Mouse models of acute lung injury and ARDS. Methods Mol Biol, 2018, 1809(2): 341-350.
|
16. |
Zeng Z, Gong H, Li Y, et al. Upregulation of mir-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Exp Lung Res, 2013, 39(7): 275-282.
|
17. |
Chen L, Li W, Qi D, et al. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells. Free Radic Res, 2018, 52(4): 480-490.
|
18. |
Zhang S, Wang P, Zhao P, et al. Pretreatment of ferulic acid attenuates inflammation and oxidative stress in a rat model of lipopolysaccharide-induced acute respiratory distress syndrome. Int J Immunopathol Pharmacol, 2018, 32(3): 518.
|
19. |
Das A, Kole L, Wang L, et al. BALT development and augmentation of hyperoxic lung injury in mice deficient in NQO1 and NQO2. Free Radic Biol Med, 2006, 40(10): 1843-1856.
|
20. |
Hsieh YH, Deng JS, Pan HP, et al. Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling. Int Immunopharmacol, 2017, 44(2): 16-25.
|
21. |
Gao D, Liu F, Li Z, et al. Isobavachalcone attenuates sephadex-induced lung injury via activation of A20 and NRF2/HO-1 in rats. Eur J Pharmacol, 2019, 848(5): 49-54.
|