1. |
Power GS, Harrison DA. Why try to predict ICU outcomes?. Curr Opin Crit Care, 2014, 20(5): 544-549.
|
2. |
Brabrand M, Henriksen DP. CURB-65 score is equal to NEWS for identifying mortality risk of pneumonia patients: an observational study. Lung, 2018, 196(3): 359-361.
|
3. |
Sanz F, Morales-Suárez-Varela M, Fernández E, et al. A composite of functional status and pneumonia severity index improves the prediction of pneumonia mortality in older patients. J Gen Intern Med, 2018, 33(4): 437-444.
|
4. |
Kocak AO, Cakir Z, Akbas I, et al. Comparison of two scores of short term serious outcome in COPD patients. Am J Emerg Med, 2020, 38(6): 1086-1091.
|
5. |
Knapik P, Krzych ŁJ, Weigl W, et al. Mortality rate in polish intensive care units is lower than predicted according to the APACHEⅡ scoring system. Intensive Care Med, 2017, 43(11): 1745-1746.
|
6. |
Akhter S, Warraich UA, Ghazal S, et al. Assessment and comparison of APACHEⅡ (Acute Physiology and Chronic Health Evaluation), SOFA (Sequential Organ Failure Assessment) score and CURB 65(Confusion; Urea; Respiratory Rate; Blood Pressure), for prediction of inpatient mortality in acute exacerbation of chronic obstructive pulmonary disease. J Pak Med Assoc, 2019, 69(2): 211-215.
|
7. |
黄伟. 重症医学阴性临床研究的意义何在?. 中华重症医学电子杂志, 2018, 4(2): 128-130.
|
8. |
Johnson AE, Stone DJ, Celi LA, et al. The MIMIC Code repository: enabling reproducibility in critical care research. J Am Med Inform Assoc, 2018, 25(1): 32-39.
|
9. |
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016, 315(8): 801-810.
|
10. |
Tomicic V, Espinoza M, Andresen M, et al. Características de los pacientes que reciben ventilación mecánica en unidades de cuidados intensivos: primer estudio multicéntrico chileno. Rev Med Chil, 2008, 136(8): 959-967.
|
11. |
Su L, Zhang R, Zhang Q, et al. The effect of mechanical ventilation on peripheral perfusion index and its association with the prognosis of critically ill patients. Crit Care Med, 2019, 47(5): 685-690.
|
12. |
Le GJR, Lemeshow S, Saulnier F, et al. A new simplified acute physiology score (SAPSⅡ) based on a European/North American multicenter study. JAMA, 1993, 270(24): 2957-2963.
|
13. |
Katsounas A, Kamacharova I, Tyczynski B, et al. The predictive performance of the SAPSⅡ and SAPS 3 scoring systems: a retrospective analysis. J Crit Care, 2016, 33: 180-185.
|
14. |
Poole D, Rossi C, Latronico N, et al. Comparison between SAPSⅡ and SAPS 3 in predicting hospital mortality in a cohort of 103 Italian ICUs. Is new always better?. Intensive Care Med, 2012, 38(8): 1280-1288.
|
15. |
Del BC, Morelli A, Bassein L, et al. Severity scores in respiratory intensive care: APACHEⅡ predicted mortality better than SAPSⅡ. Respir Care, 1995, 40(10): 1042-1047.
|
16. |
Karagoz S, Tekdos Seker Y, Cukurova Z, et al. The effectiveness of scoring systems in the prediction of diagnosis-based mortality. Ther Apher Dial, 2019, 23(5): 418-424.
|
17. |
Zampieri FG, Granholm A, Møller MH, et al. Customization and external validation of the simplified mortality score for the intensive care unit (SMS-ICU) in Brazilian critically ill patients. J Crit Care, 2020, 59: 94-100.
|
18. |
Granholm A, Perner A, Krag M, et al. External validation of the simplified mortality score for the intensive care unit (SMS-ICU). Acta Anaesthesiol Scand, 2019, 63(9): 1216-1224.
|
19. |
Johnson AE, Kramer AA, Clifford GD. A new severity of illness scale using a subset of acute physiology and chronic health evaluation data elements shows comparable predictive accuracy. Crit Care Med, 2013, 41(7): 1711-1718.
|
20. |
张牧城, 汪正光, 洪曦菲, 等. 牛津急性疾病严重程度评分对重症患者病情评估的价值: 单中心470例病例分析. 中华急诊医学杂志, 2017, 26(2): 197-201.
|
21. |
Schjørring OL, Jensen AKG, Nielsen CG, et al. Arterial oxygen tensions in mechanically ventilated ICU patients and mortality: a retrospective, multicentre, observational cohort study. Br J Anaesth, 2020, 124(4): 420-429.
|
22. |
Le Gall JR, Klar J, Lemeshow S, et al. The logistic organ dysfunction system. a new way to assess organ dysfunction in the intensive care unit ICU scoring group. JAMA, 1996, 276(10): 802-810.
|
23. |
Usman OA, Usman AA, Ward MA. Comparison of SIRS, qSOFA, and NEWS for the early identification of sepsis in the emergency department. Am J Emerg Med, 2019, 37(8): 1490-1497.
|
24. |
Khwannimit B, Bhurayanontachai R, Vattanavanit V. Comparison of the performance of SOFA, qSOFA and SIRS for predicting mortality and organ failure among sepsis patients admitted to the intensive care unit in a middle-income country. J Crit Care, 2018, 44: 156-160.
|
25. |
胡畅, 胡波, 李志峰, 等. 四种评分系统对脓毒症患者 ICU 死亡风险的预测价值比较. 南方医科大学学报, 2020, 40(4): 513-518.
|
26. |
Kır S, Bahçeci BK, Ayrancı E, et al. Age is not a risk factor in survival of severely ill patients with co-morbidities in a medical intensive care unit. Ir J Med Sci, 2021, 190(1): 317-324.
|
27. |
Liang J, Li Z, Dong H, et al. Prognostic factors associated with mortality in mechanically ventilated patients in the intensive care unit: a single-center, retrospective cohort study of 905 patients. Medicine (Baltimore), 2019, 98(42): e17592.
|
28. |
Weigl W, Adamski J, Goryński P, et al. ICU mortality and variables associated with ICU survival in Poland: a nationwide database study. Eur J Anaesthesiol, 2018, 35(12): 949-954.
|
29. |
Peigne V, Somme D, Guérot E, et al. Treatment intensity, age and outcome in medical ICU patients: results of a French administrative database. Ann Intensive Care, 2016, 6(1): 7.
|
30. |
Granholm A, Perner A, Krag M, et al. Development and internal validation of the simplified mortality score for the intensive care unit (SMS-ICU). Acta Anaesthesiol Scand, 2018, 62(3): 336-346.
|
31. |
Jentzer JC, Anavekar NS, Bennett C, et al. Derivation and validation of a novel cardiac intensive care unit admission risk score for mortality. J Am Heart Assoc, 2019, 8(17): e013675.
|
32. |
Prin M, Pan S, Kadyaudzu C, et al. Development of a Malawi intensive care mortality risk evaluation (MIME) model, a prospective cohort study. Int J Surg, 2018, 60: 60-66.
|
33. |
Abramson MJ, Wolfe R. Prediction models in respiratory medicine. Respirology, 2020, 25(7): 666-667.
|