1. |
Porcel JM, Esquerda A, Vives M, et al. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch Bronconeumol, 2014, 50(5): 161-165.
|
2. |
郑建, 欧勤芳, 刘袁媛, 等. 结核性胸膜炎患者结核特异性 T 淋巴细胞的免疫应答及其迁徙作用. 中华传染病杂志, 2013, 31(12): 715-718.
|
3. |
Palma RM, Bielsa S, Esquerda A, et al. Diagnostic accuracy of pleural fluid adenosine deaminase for diagnosing tuberculosis. Meta-analysis of Spanish studies. Arch Bronconeumol, 2019, 55(1): 23-30.
|
4. |
Jeon D. Tuberculous pleurisy: an update. Tuberc Respir Dis (Seoul), 2014, 76(4): 153-159.
|
5. |
Porcel JM, Esquerda A, Bielsa S. Diagnostic performance of adenosine deaminase activity in pleural fluid: a single-center experience with over 2100 consecutive patients. Eur J Intern Med, 2010, 21(5): 419-423.
|
6. |
Aggarwal AN, Agarwal R, Sehgal IS, et al. Adenosine deaminase for diagnosis of tuberculous pleural effusion: a systematic review and meta-analysis. PLoS One, 2019, 14(3): e0213728.
|
7. |
Bielsa S, Palma R, Pardina M, et al. Comparison of polymorphonuclear- and lymphocyte-rich tuberculous pleural effusions. Int J Tuberc Lung Dis, 2013, 17(1): 85-89.
|
8. |
Ye ZJ, Xu LL, Zhou Q, et al. Recruitment of IL-27-producing CD4+ T cells and effect of IL-27 on pleural mesothelial cells in tuberculous pleurisy. Lung, 2015, 193(4): 539-548.
|
9. |
Li M, Zhu W, Khan R, et al. Accuracy of interleukin-27 assay for the diagnosis of tuberculous pleurisy: a PRISMA-compliant meta-analysis. Medicine (Baltimore), 2017, 96(50): e9205.
|
10. |
Liu Q, Yu YX, Wang XJ, et al. Diagnostic accuracy of interleukin-27 between tuberculous pleural effusion and malignant pleural effusion: a meta-analysis. Respiration, 2018, 95(6): 469-477.
|
11. |
Wang W, Zhou Q, Zhai K, et al. Diagnostic accuracy of interleukin 27 for tuberculous pleural effusion: two prospective studies and one meta-analysis. Thorax, 2018, 73(3): 240-247.
|
12. |
Jiang J, Shi HZ, Liang QL, et al. Diagnostic value of interferon-gamma in tuberculous pleurisy: a metaanalysis. Chest, 2007, 131(4): 1133-1141.
|
13. |
Li ZZ, Qin WZ, Li L, et al. Accuracy of enzyme-linked immunospot assay for diagnosis of pleural tuberculosis: a meta-analysis. Genet Mol Res, 2015, 14(3): 11672-11680.
|
14. |
Aggarwal AN, Agarwal R, Gupta D, et al. Interferon gamma release assays for diagnosis of pleural tuberculosis: a aystematic review and meta-analysis. J Clin Microbiol, 2015, 53(8): 2451-2459.
|
15. |
Enz N, Fragoso F, Gamrekeli A, et al. Carcinoembryonic antigen-positive pleural effusion in early stage non-small cell lung cancer without pleural infiltration. J Thorac Dis, 2018, 10(5): E340-E343.
|
16. |
Woo CG, Son SM, Han HS, et al. Diagnostic benefits of the combined use of liquid-based cytology, cell block, and carcinoembryonic antigen immunocytochemistry in malignant pleural effusion. J Thorac Dis, 2018, 10(8): 4931-4939.
|
17. |
Tozzoli R, Basso SM, D'Aurizio F, et al. Evaluation of predictive value of pleural CEA in patients with pleural effusions and histological findings: a prospective study and literature review. Clin Biochem, 2016, 49(16-17): 1227-1231.
|
18. |
周晓明, 康大海, 侯刚, 等. 胰岛素样生长因子结合蛋白 2 和癌胚抗原对恶性胸腔积液与结核性胸腔积液的鉴别诊断价值分析. 实用心脑肺血管病杂志, 2017, 25(1): 95-98.
|
19. |
Nguyen AH, Miller EJ, Wichman CS, et al. Diagnostic value of tumor antigens in malignant pleural effusion: a meta-analysis. Transl Res, 2015, 166(5): 432-439.
|
20. |
陈晓波, 张琳, 徐冉冉. 肿瘤标志物 CA153、CA125 检验在肺癌诊断中的应用价值. 中国医药指南, 2018, 16(18): 142-143.
|
21. |
Chen Y, Mathy NW, Lu HD. The role of VEGF in the diagnosis and treatment of malignant pleural effusion in patients with non-small cell lung cancer (Review). Mol Med Rep, 2018, 17(6): 8019-8030.
|
22. |
Gu Y, Zhang M, Li GH, et al. Diagnostic values of vascular endothelial growth factor and epidermal growth factor receptor for benign and malignant hydrothorax. Chin Med J (Engl), 2015, 128(3): 305-309.
|
23. |
陈先梦, 孙耕耘. 血管内皮生长因子对恶性胸腔积液诊断价值的 Meta 分析. 中华肺部疾病杂志(电子版), 2017, 10(1): 29-34.
|
24. |
Wu DW, Chang WA, Liu KT, et al. Vascular endothelial growth factor and protein level in pleural effusion for differentiating malignant from benign pleural effusion. Oncol Lett, 2017, 14(3): 3657-3662.
|
25. |
Mohajeri A, Sanaei S, Kiafar F, et al. The challenges of recombinant endostatin in clinical application: focus on the different expression systems and molecular bioengineering. Adv Pharm Bull, 2017, 7(1): 21-34.
|
26. |
Yang RZ, Lee MJ, Hu H, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab, 2006, 290(6): E1253-E1261.
|
27. |
Wali A, Morin PJ, Hough CD, et al. Identification of intelectin overexpression in malignant pleural mesothelioma by serial analysis of gene expression (SAGE). Lung Cancer, 2005, 48(1): 19-29.
|
28. |
Tsuji S, Tsuura Y, Morohoshi T, et al. Secretion of intelectin-1 from malignant pleural mesothelioma into pleural effusion. Br J Cancer, 2010, 103(4): 517-523.
|
29. |
Böger C, Behrens HM, Mathiak M, et al. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget, 2016, 7(17): 24269-24283.
|
30. |
Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol, 2016, 17(6): 717-726.
|
31. |
Wang L, Wang H, Chen H, et al. Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma. Oncotarget, 2015, 6(38): 41228-41236.
|
32. |
Howitt BE, Shukla SA, Sholl LM, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol, 2015, 1(9): 1319-1323.
|
33. |
王鹏. 血清可溶性分子 B7-H4 检测在非小细胞肺癌中的应用. 检验医学, 2013, 28(12): 1140-1141.
|
34. |
冀玉珍, 刘晓良, 侯淼. 可溶性程序性死亡分子配体 1 在肺癌胸腔积液中的水平及临床意义. 检验医学, 2017, 32(2): 99-103.
|
35. |
张雪漫, 王廷杰. 46 例脓胸的临床分析和诊治体会. 临床肺科杂志, 2005, 10(2): 234.
|
36. |
赵俊, 陈毅斐. 血清 CRP、ADA、SAA 联合检测在鉴别感染性胸腔积液中的价值. 医学新知杂志, 2017, 27(5): 453-455.
|
37. |
Garcia-Pachon E, Soler MJ, Padilla-Navas I, et al. C-reactive protein in lymphocytic pleural effusions: a diagnostic aid in tuberculous pleuritis. Respiration, 2005, 72(5): 486-489.
|
38. |
Porcel JM, Bielsa S, Esquerda A, et al. Pleural fluid C-reactive protein contributes to the diagnosis and assessment of severity of parapneumonic effusions. Eur J Intern Med, 2012, 23(5): 447-450.
|
39. |
黄建达, 蔡挺. C 反应蛋白、触珠蛋白在胸腔积液鉴别诊断中的价值. 临床内科杂志, 2001, 18(3): 192-193.
|
40. |
Porcel JM. Pleural fluid tests to identify complicated parapneumonic effusions. Curr Opin Pulm Med, 2010, 16(4): 357-361.
|
41. |
陈孝谦, 汪铮, 李秀. 血清降钙素原对渗出性胸腔积液病因的鉴别价值. 临床肺科杂志, 2013, 18(8): 1446-1448.
|
42. |
Lin MC, Chen YC, Wu JT, et al. Diagnostic and prognostic values of pleural fluid procalcitonin in parapneumonic pleural effusions. Chest, 2009, 136(1): 205-211.
|
43. |
黄宇筠, 黄鑫炎, 罗益锋, 等. HS-CRP、PCT 在鉴别类肺炎性与结核性胸腔积液的研究. 实用医学杂志, 2013, 29(22): 3666-3667.
|
44. |
邱跃灵, 麦转英. 降钙素原与 CA125 联合检测对结核性胸腔积液的诊断价值. 临床肺科杂志, 2012, 17(9): 1640-1641.
|
45. |
He C, Wang B, Li D, et al. Performance of procalcitonin in diagnosing parapneumonic pleural effusions: a clinical study and meta-analysis. Medicine (Baltimore), 2017, 96(33): e7829.
|
46. |
Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9(6): 425-434.
|
47. |
Lee J, Lee SY, Lim JK, et al. Radiologic and laboratory differences in patients with tuberculous and parapneumonic pleural effusions showing non-lymphocytic predominance and high adenosine deaminase levels. Infection, 2015, 43(1): 65-71.
|
48. |
鄢斌, 刘军. 联合检测血清及胸水 LDH、ADA、CEA、CA153 对胸水性质的鉴别价值. 现代医药卫生, 2009, 25(10): 1505-1507.
|
49. |
Tamiya H, Mitani A, Saito A, et al. Exosomal microRNA expression profiling in patients with lung adenocarcinoma-associated malignant pleural effusion. Anticancer Res, 2018, 38(12): 6707-6714.
|
50. |
Zennaro L, Vanzani P, Nicolè L, et al. Metabonomics by proton nuclear magnetic resonance in human pleural effusions: a route to discriminate between benign and malignant pleural effusions and to target small molecules as potential cancer biomarkers. Cancer Cytopathol, 2017, 125(5): 341-348.
|
51. |
Wang C, Peng J, Kuang Y, et al. Metabolomic analysis based on 1H-nuclear magnetic resonance spectroscopy metabolic profiles in tuberculous, malignant and transudative pleural effusion. Mol Med Rep, 2017, 16(2): 1147-1156.
|