1. |
Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA, 2018, 319(7): 698-710.
|
2. |
邱海波. 急性呼吸窘迫综合征 50 年: 中国与世界. 中华重症医学电子杂志(网络版), 2016, 2(4): 225-230.
|
3. |
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA, 2016, 315(8): 788-800.
|
4. |
Dong M, Zhou Y, Kang Y, et al. Discussion on “opening pressures and atelectrauma in acute respiratory distress syndrome”. Intensive Care Med, 2017, 43(12): 1936-1937.
|
5. |
Cressoni M, Chiumello D, Algieri I, et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med, 2017, 43(5): 603-611.
|
6. |
Mi MY, Matthay MA, Morris AH. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med, 2018, 379(9): 884-887.
|
7. |
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med, 2015, 372(8): 747-755.
|
8. |
Baedorf KE, Loring SH, Talmor D. Should we titrate PEEP based on end-expiratory transpulmonary pressure?-yes. Ann Transl Med, 2018, 6(19): 390.
|
9. |
Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med, 2016, 42(10): 1597-1600.
|
10. |
Yoshida T, Brochard L. Esophageal pressure monitoring. Curr Opin Crit Care, 2018, 24(3): 216-222.
|
11. |
Mojoli F, Torriglia F, Orlando A, et al. Technical aspects of bedside respiratory monitoring of transpulmonary pressure. Ann Transl Med, 2018, 6(19): 377.
|
12. |
Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med, 2017, 195(9): 1253-1263.
|
13. |
Cressoni M, Chiurazzi C, Chiumello D, et al. Does high PEEP prevent alveolar cycling?. Med Klin Intensivmed Notfmed, 2018, 113(S1): 7-12.
|
14. |
Bergez M, Fritsch N, Tran-Van D, et al. PEEP titration in moderate to severe ARDS: Plateau versus transpulmonary pressure. Ann Intensive Care, 2019, 9(1): 81.
|
15. |
Beitler JR, Sarge T, Banner-Goodspeed VM, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: A randomized clinical trial. JAMA, 2019, 321(9): 846-857.
|
16. |
Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med, 2008, 359(20): 2095-2104.
|
17. |
Henderson WR, Chen L, Amato M, et al. Fifty years of research in ARDS. respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med, 2017, 196(7): 822-833.
|
18. |
Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics?. Crit Care Med, 2013, 41(4): 1046-1055.
|
19. |
Ozkaya N, Nordin M, Goldsheyder D, et al. Mechanical Properties of Biological Tissues. In: Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation. 3rd ed. New York: Springer, 2012, 221-236.
|
20. |
Marini JJ. Strain rate and cycling Frequency-The "dynamic duo" of injurious tidal stress. Crit Care Med, 2016, 44(9): 1800-1801.
|
21. |
Protti A, Maraffi T, Milesi M, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med, 2016, 44(9): e838-e845.
|
22. |
Nascimento Baez Garcia CS, Abreu SC, Lassance Soares RM, et al. Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow. Crit Care Med, 2008, 36(1): 232-239.
|
23. |
Santini A, Mauri T, Dalla CF, et al. Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study. Crit Care, 2019, 23(1): 369.
|
24. |
Protti A, Votta E, Gattinoni L. Which is the most important strain in the pathogenesis of ventilator-induced lung injury: dynamic or static?. Curr Opin Crit Care, 2014, 20(1): 33-38.
|
25. |
Jain SV, Kollisch-Singule M, Satalin J, et al. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model. Intensive Care Med Exp, 2017, 5(1): 25.
|
26. |
Protti A, Andreis DT, Milesi M, et al. Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp, 2015, 3(1): 34.
|
27. |
Guldner A, Braune A, Ball L, et al. Comparative effects of volutrauma and atelectrauma on lung inflammation in experimental acute respiratory distress syndrome. Crit Care Med, 2016, 44(9): e854-e865.
|
28. |
Marini JJ, Rocco P, Gattinoni L. Static and dynamic contributors to VILI in clinical practice: pressure, energy, and power. Am J Respir Crit Care Med, 2019, 201(7): 767-774.
|
29. |
Marini JJ. Evolving concepts for safer ventilation. Crit Care, 2019, 23(Suppl 1): 114.
|
30. |
Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med, 2016, 42(10): 1567-1575.
|
31. |
Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care, 2017, 21(Suppl 3): 312.
|
32. |
Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology, 2016, 124(5): 1100-1108.
|
33. |
Parhar K, Zjadewicz K, Soo A, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening. An observational cohort study. Ann Am Thorac Soc, 2019, 16(10): 1263-1272.
|
34. |
Serpa Neto A, Deliberato RO, Johnson A, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med, 2018, 44(11): 1914-1922.
|
35. |
Santos RS, Maia LA, Oliveira MV, et al. Biologic impact of mechanical power at high and low tidal volumes in experimental mild acute respiratory distress syndrome. Anesthesiology, 2018, 128(6): 1193-1206.
|
36. |
Tonetti T, Cressoni M, Collino F, et al. Volutrauma, atelectrauma, and mechanical power. Crit Care Med, 2017, 45(3): e327-e328.
|
37. |
Samary CS, Silva PL, Gama DAM, et al. Ventilator-induced lung injury: power to the mechanical power. Anesthesiology, 2016, 125(5): 1070-1071.
|
38. |
Marini JJ. Dissipation of energy during the respiratory cycle: conditional importance of ergotrauma to structural lung damage. Curr Opin Crit Care, 2018, 24(1): 16-22.
|
39. |
Huhle R, Serpa NA, Schultz MJ, et al. Is mechanical power the final word on ventilator-induced lung injury?-no. Ann Transl Med, 2018, 6(19): 394.
|
40. |
Serpa Neto A, Deliberato RO, Johnson AE, et al. Normalization of mechanical power to anthropometric indices: impact on its association with mortality in critically ill patients. Intensive Care Med, 2019, 45(12): 1835-1837.
|
41. |
Gattinoni L, Marini JJ, Collino F, et al. The future of mechanical ventilation: lessons from the present and the past. Crit Care, 2017, 21(1): 183.
|