Citation: 唐骢宸, 王丽春. 冠状病毒的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2020, 19(4): 330-336. doi: 10.7507/1671-6205.202003076 Copy
1. | Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol, 2019, 73: 529-557. |
2. | Tang Q, Song Y, Shi M, et al. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition. Sci Rep, 2015, 5: 17155. |
3. | Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798): 270-273. |
4. | Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol, 2020, 92(4): 424-432. |
5. | Li F. Structure, Function, and evolution of coronavirus spike proteins. Annu Rev Virol, 2016, 3(1): 237-261. |
6. | Li W, Michael JM, Natalya V, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450-454. |
7. | McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8): 2991-3018. |
8. | Masters PS. The molecular biology of coronaviruses. Adv Virus Res, 2006, 66: 193-292. |
9. | Venkatagopalan P, Sasha MD, Lisa AL, et al. Coronavirus envelope (E) protein remains at the site of assembly. Virology, 2015, 478: 75-85. |
10. | Nieto-Torres JL, Marta LD, Enrique A, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology, 2011, 415(2): 69-82. |
11. | Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J, 2019, 16(1): 69. |
12. | Ruch TR, Machamer CE. The coronavirus E protein: assembly and beyond. Viruses, 2012, 4(3): 363-382. |
13. | 中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第七版)[EB/OL].(2020-03-04). http://www.nhc.gov.cn/yzygj/s7652m/202003/a31191442e29474b98bfed5579d5af95.shtml. |
14. | Monto AS. Medical reviews: coronaviruses. Yale J Biol Med, 1974, 47(4): 234-251. |
15. | Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol, 2009, 7(6): 439-450. |
16. | 田怀玉. 2019-nCoV: 来自冠状病毒的新挑战. 中华预防医学杂志, 2020, 54(3): 235-238. |
17. | Chen J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect, 2020, 22(2): 69-71. |
18. | Jiang S, Xia S, Ying T, et al. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cell Mol Immunol, 2020, 17(5): 554. |
19. | 刘昌孝, 伊秀林, 王玉丽, 等. 认识新冠病毒(SARS-CoV-2), 探讨抗病毒药物研发策略. 药物评价研究, 2020, 43(3): 361-371. |
20. | Wang M, Yuan M, Xu H, et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis, 2005, 11(12): 1860-18565. |
21. | Yuan J, Hon CC, Wang D, et al. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J Gen Virol, 2010, 91(Pt 4): 1058-1062. |
22. | Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3): 325-328. |
23. | Peiris JS, Lai ST, Guan Y, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366): 1319-1325. |
24. | Stadler K, Masignani V, Eickmann M, et al. SARS--beginning to understand a new virus. Nat Rev Microbiol, 2003, 1(3): 209-218. |
25. | Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs, 2019, 9(1): 35-42. |
26. | Paules CI, Marston HD, Fauci AS, et al. Coronavirus infections-more than just the common cold[J/OL]. JAMA.[2020-01-23]. https://jamanetwork.com/journals/jama/fullarticle/2759815. |
27. | Graham RL, Donaldson EF, Baric RS, et al. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol, 2013, 11(12): 836-848. |
28. | Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect, 2020, 9(1): 221-236. |
29. | 华农: 穿山甲为潜在中间宿主 从中分离的毒株与新冠毒株相似度99%[V/OL].(2020-02-07). https://v.qq.com/x/page/q3062gyqgvv.html?ptag=qqbrowser. |
30. | Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223): 514-523. |
31. | Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J/OL]. JAMA. [2020-02-07]. https://jamanetwork.com/journals/jama/fullarticle/2761044. |
32. | Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020, 382(18): 1708-1720. |
33. | Ng OW, Chia A, Tan AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 2016, 34(17): 2008-2014. |
34. | 刘登科, 刘宇鹏. 高致病性冠状病毒对抗宿主干扰素抗病毒系统作用的研究进展. 中国呼吸与危重监护杂志, 2020, 19(3): 309-311. |
35. | Zheng B, He M, Wong K, et al. Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type I interferons (IFN-alpha/beta) but not by type Ⅱ interferon (IFN-gamma). J Interferon Cytokine Res, 2004, 24(7): 388-390. |
36. | Moriguchi H, Sato C. Treatment of SARS with human interferons. Lancet, 2003, 362(9390): 1159. |
37. | de Wilde AH, Raj VS, Oudshoorn D, et al. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment. J Gen Virol, 2013, 94(Pt 8): 1749-1760. |
38. | 刘鉴峰, 刘金剑, 褚丽萍, 等. 雾化吸入干扰素α1b在兔体内的分布及代谢途径. 医药导报, 2013, 32(1): 1-5. |
39. | Wyen C, Fuhr U, Frank D, et al. Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther, 2008, 84(1): 75-82. |
40. | Yeh RF, Gaver VE, Patterson KB, et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr, 2006, 42(1): 52-60. |
41. | Chu CM, Cheng VCC, Hunget IFN, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59(3): 252-256. |
42. | Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun, 2020, 11(1): 222. |
43. | Lim J, Jeon S, Shin HY, et al. Case of the index patient who caused tertiary transmission of covid-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci, 2020, 35(6): e79. |
44. | Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med, 2020, 382(19): 1787-1799. |
45. | 司斌, 蒋桔泉, 刘孟丽, 等. 利巴韦林治疗严重急性呼吸综合征 38 例. 医药导报, 2004, 23(8): 530-532. |
46. | Almekhlafi GA, Albarrak MM, Mandourah Y, et al. Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients. Crit Care, 2016, 20(1): 123. |
47. | Choi WS, Kang C, Kim Y, et al. Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea. Infect Chemother, 2016, 48(2): 118-126. |
48. | Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594): 381-385. |
49. | Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020, 30(3): 269-271. |
50. | Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med, 2017, 9(396): eaal3653. |
51. | Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2[J/OL]. Nature.[2020-06-09]. https://www.ncbi.nlm.nih.gov/pubmed/32516797. |
52. | Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19 - preliminary report[J/OL]. N Engl J Med.[2020-05-22]. https://www.ncbi.nlm.nih.gov/pubmed/32445440. |
53. | Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236): 1569-1578. |
54. | Furuta Y, Komeno T, Nakamura T, et al. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci, 2017, 93(7): 449-463. |
55. | 全国首个潜在治疗新冠肺炎药物“法维拉韦”获批上市[V/OL]. (2020.02.17). https://www.sohu.com/a/373597048_120488303. |
56. | Cai Q, Yang M, Liu D, et al. Experimental treatment with Favipiravir for COVID-19: an open-label control study[J/OL]. Engineering (Beijing). [2020-03-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185795/. |
57. | Pilkington V, Pepperrell T, Hill A, et al. A review of the safety of favipiravir - a potential treatment in the COVID-19 pandemic?. J Virus Erad, 2020, 6(2): 45-51. |
58. | Boriskin YS, Leneva I A, Pécheur E-I, et al. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem, 2008, 15(10): 997-1005. |
59. | Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: a retrospective cohort study. J Infect, 2020, 81(1): e1-e5. |
60. | Zhang JN, Wang W, Peng B, et al. Potential of Arbidol for post-exposure prophylaxis of COVID-19 transmission-a preliminary report of a retrospective cohort study. Curr Med Sci. [2020-05-30]. http://www.eurekaselect.com/66734/article. |
61. | Xu P, Huang J, Fan Z, et al. Arbidol/IFN-alpha2b therapy for patients with corona virus disease 2019: a retrospective multicenter cohort study. Microbes Infect, 2020, 22(4-5): 200-205. |
62. | Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov, 2020, 6: 16. |
63. | Vijayanand P, Wilkins E, Woodhead M, et al. Severe acute respiratory syndrome (SARS): a review. Clin Med (Lond), 2004, 4(2): 152-160. |
64. | Russell CD, Millar JE, Baillie JK, et al. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223): 473-475. |
65. | 赵建平, 胡轶, 杜荣辉, 等. 新型冠状病毒肺炎糖皮质激素使用的建议. 中华结核和呼吸杂志, 2020, 43(3): 183-184. |
66. | Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223): e30-e31. |
67. | Yamamoto M, Matsuyama S, Li X, et al. Identification of Nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother, 2016, 60(11): 6532-6539. |
68. | Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol, 2009, 7(3): 226-236. |
- 1. Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol, 2019, 73: 529-557.
- 2. Tang Q, Song Y, Shi M, et al. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition. Sci Rep, 2015, 5: 17155.
- 3. Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798): 270-273.
- 4. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol, 2020, 92(4): 424-432.
- 5. Li F. Structure, Function, and evolution of coronavirus spike proteins. Annu Rev Virol, 2016, 3(1): 237-261.
- 6. Li W, Michael JM, Natalya V, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450-454.
- 7. McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8): 2991-3018.
- 8. Masters PS. The molecular biology of coronaviruses. Adv Virus Res, 2006, 66: 193-292.
- 9. Venkatagopalan P, Sasha MD, Lisa AL, et al. Coronavirus envelope (E) protein remains at the site of assembly. Virology, 2015, 478: 75-85.
- 10. Nieto-Torres JL, Marta LD, Enrique A, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology, 2011, 415(2): 69-82.
- 11. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J, 2019, 16(1): 69.
- 12. Ruch TR, Machamer CE. The coronavirus E protein: assembly and beyond. Viruses, 2012, 4(3): 363-382.
- 13. 中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第七版)[EB/OL].(2020-03-04). http://www.nhc.gov.cn/yzygj/s7652m/202003/a31191442e29474b98bfed5579d5af95.shtml.
- 14. Monto AS. Medical reviews: coronaviruses. Yale J Biol Med, 1974, 47(4): 234-251.
- 15. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol, 2009, 7(6): 439-450.
- 16. 田怀玉. 2019-nCoV: 来自冠状病毒的新挑战. 中华预防医学杂志, 2020, 54(3): 235-238.
- 17. Chen J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect, 2020, 22(2): 69-71.
- 18. Jiang S, Xia S, Ying T, et al. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cell Mol Immunol, 2020, 17(5): 554.
- 19. 刘昌孝, 伊秀林, 王玉丽, 等. 认识新冠病毒(SARS-CoV-2), 探讨抗病毒药物研发策略. 药物评价研究, 2020, 43(3): 361-371.
- 20. Wang M, Yuan M, Xu H, et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis, 2005, 11(12): 1860-18565.
- 21. Yuan J, Hon CC, Wang D, et al. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J Gen Virol, 2010, 91(Pt 4): 1058-1062.
- 22. Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3): 325-328.
- 23. Peiris JS, Lai ST, Guan Y, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366): 1319-1325.
- 24. Stadler K, Masignani V, Eickmann M, et al. SARS--beginning to understand a new virus. Nat Rev Microbiol, 2003, 1(3): 209-218.
- 25. Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs, 2019, 9(1): 35-42.
- 26. Paules CI, Marston HD, Fauci AS, et al. Coronavirus infections-more than just the common cold[J/OL]. JAMA.[2020-01-23]. https://jamanetwork.com/journals/jama/fullarticle/2759815.
- 27. Graham RL, Donaldson EF, Baric RS, et al. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol, 2013, 11(12): 836-848.
- 28. Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect, 2020, 9(1): 221-236.
- 29. 华农: 穿山甲为潜在中间宿主 从中分离的毒株与新冠毒株相似度99%[V/OL].(2020-02-07). https://v.qq.com/x/page/q3062gyqgvv.html?ptag=qqbrowser.
- 30. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223): 514-523.
- 31. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J/OL]. JAMA. [2020-02-07]. https://jamanetwork.com/journals/jama/fullarticle/2761044.
- 32. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020, 382(18): 1708-1720.
- 33. Ng OW, Chia A, Tan AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 2016, 34(17): 2008-2014.
- 34. 刘登科, 刘宇鹏. 高致病性冠状病毒对抗宿主干扰素抗病毒系统作用的研究进展. 中国呼吸与危重监护杂志, 2020, 19(3): 309-311.
- 35. Zheng B, He M, Wong K, et al. Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type I interferons (IFN-alpha/beta) but not by type Ⅱ interferon (IFN-gamma). J Interferon Cytokine Res, 2004, 24(7): 388-390.
- 36. Moriguchi H, Sato C. Treatment of SARS with human interferons. Lancet, 2003, 362(9390): 1159.
- 37. de Wilde AH, Raj VS, Oudshoorn D, et al. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment. J Gen Virol, 2013, 94(Pt 8): 1749-1760.
- 38. 刘鉴峰, 刘金剑, 褚丽萍, 等. 雾化吸入干扰素α1b在兔体内的分布及代谢途径. 医药导报, 2013, 32(1): 1-5.
- 39. Wyen C, Fuhr U, Frank D, et al. Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther, 2008, 84(1): 75-82.
- 40. Yeh RF, Gaver VE, Patterson KB, et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr, 2006, 42(1): 52-60.
- 41. Chu CM, Cheng VCC, Hunget IFN, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59(3): 252-256.
- 42. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun, 2020, 11(1): 222.
- 43. Lim J, Jeon S, Shin HY, et al. Case of the index patient who caused tertiary transmission of covid-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci, 2020, 35(6): e79.
- 44. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med, 2020, 382(19): 1787-1799.
- 45. 司斌, 蒋桔泉, 刘孟丽, 等. 利巴韦林治疗严重急性呼吸综合征 38 例. 医药导报, 2004, 23(8): 530-532.
- 46. Almekhlafi GA, Albarrak MM, Mandourah Y, et al. Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients. Crit Care, 2016, 20(1): 123.
- 47. Choi WS, Kang C, Kim Y, et al. Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea. Infect Chemother, 2016, 48(2): 118-126.
- 48. Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594): 381-385.
- 49. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020, 30(3): 269-271.
- 50. Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med, 2017, 9(396): eaal3653.
- 51. Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2[J/OL]. Nature.[2020-06-09]. https://www.ncbi.nlm.nih.gov/pubmed/32516797.
- 52. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19 - preliminary report[J/OL]. N Engl J Med.[2020-05-22]. https://www.ncbi.nlm.nih.gov/pubmed/32445440.
- 53. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236): 1569-1578.
- 54. Furuta Y, Komeno T, Nakamura T, et al. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci, 2017, 93(7): 449-463.
- 55. 全国首个潜在治疗新冠肺炎药物“法维拉韦”获批上市[V/OL]. (2020.02.17). https://www.sohu.com/a/373597048_120488303.
- 56. Cai Q, Yang M, Liu D, et al. Experimental treatment with Favipiravir for COVID-19: an open-label control study[J/OL]. Engineering (Beijing). [2020-03-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185795/.
- 57. Pilkington V, Pepperrell T, Hill A, et al. A review of the safety of favipiravir - a potential treatment in the COVID-19 pandemic?. J Virus Erad, 2020, 6(2): 45-51.
- 58. Boriskin YS, Leneva I A, Pécheur E-I, et al. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem, 2008, 15(10): 997-1005.
- 59. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: a retrospective cohort study. J Infect, 2020, 81(1): e1-e5.
- 60. Zhang JN, Wang W, Peng B, et al. Potential of Arbidol for post-exposure prophylaxis of COVID-19 transmission-a preliminary report of a retrospective cohort study. Curr Med Sci. [2020-05-30]. http://www.eurekaselect.com/66734/article.
- 61. Xu P, Huang J, Fan Z, et al. Arbidol/IFN-alpha2b therapy for patients with corona virus disease 2019: a retrospective multicenter cohort study. Microbes Infect, 2020, 22(4-5): 200-205.
- 62. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov, 2020, 6: 16.
- 63. Vijayanand P, Wilkins E, Woodhead M, et al. Severe acute respiratory syndrome (SARS): a review. Clin Med (Lond), 2004, 4(2): 152-160.
- 64. Russell CD, Millar JE, Baillie JK, et al. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223): 473-475.
- 65. 赵建平, 胡轶, 杜荣辉, 等. 新型冠状病毒肺炎糖皮质激素使用的建议. 中华结核和呼吸杂志, 2020, 43(3): 183-184.
- 66. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223): e30-e31.
- 67. Yamamoto M, Matsuyama S, Li X, et al. Identification of Nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother, 2016, 60(11): 6532-6539.
- 68. Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol, 2009, 7(3): 226-236.
-
Previous Article
The correlation between post-traumatic stress disorder and perceived stress in suspected COVID-19 patients quarantined in hospital -
Next Article
Comparison of efficacy and disease burden of tracheoscopy intervention in the initial treatment stage of community-acquired pneumonia in four hospitals