1. |
Ran N, Pang Z, Gu Y, et al. An updated overview of metabolomic profile changes in chronic obstructive pulmonary disease. Metabolites, 2019, 9(6): 111.
|
2. |
Quaderi SA, Hurst JR. The unmet global burden of COPD. Glob Health Epidemiol Genom, 2018, 3: e4.
|
3. |
Cardoso J, Coelho R, Rocha C, et al. Prediction of severe exacerbations and mortality in COPD: the role of exacerbation history and inspiratory capacity/total lung capacity ratio. Int J Chron Obstruct Pulmon Dis, 2018, 13: 1105-1113.
|
4. |
Psychogios N, Hau DD, Peng J, et al. The human serum metabolome. PLoS One, 2011, 6(2): e16957.
|
5. |
Kilk K, Aug A, Ottas A, et al. Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical characteristics. Int J Mol Sci, 2018, 19(3): 666.
|
6. |
Chen Q, Deeb RS, Ma Y, et al. Serum metabolite biomarkers discriminate healthy smokers from COPD smokers. PLoS One, 2015, 10(12): e0143937.
|
7. |
Wang L, Tang Y, Liu S, et al. Metabonomic profiling of serum and urine by 1H NMR-based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy individuals. PLoS One, 2013, 8(6): e65675.
|
8. |
Ren X, Ma S, Wang J, et al. Comparative effects of dexamethasone and bergenin on chronic bronchitis and their anti-inflammatory mechanisms based on NMR metabolomics. Mol Biosyst, 2016, 12(6): 1938-1947.
|
9. |
Deja S, Porebska I, Kowal A, et al. Metabolomics provide new insights on lung cancer staging and discrimination from chronic obstructive pulmonary disease. J Pharm Biomed Anal, 2014, 100: 369-380.
|
10. |
Nobakht MGB, Aliannejad R, Rezaei-Tavirani M, et al. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers, 2015, 20(1): 5-16.
|
11. |
Ubhi BK, Riley JH, Shaw PA, et al. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur Respir J, 2012, 40(2): 345-355.
|
12. |
Van AM, Heijink M, Mayboroda OA, et al. Dynamic differences in dietary polyunsaturated fatty acid metabolism in sputum of COPD patients and controls. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(3): 224-233.
|
13. |
Ubhi BK, Cheng KK, Dong J, et al. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol Biosyst, 2012, 8(12): 3125-3133.
|
14. |
中华医学会呼吸病学分会慢性阻塞性肺疾病学组, 中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会. 慢性阻塞性肺疾病诊治指南(2021 年修订版). 中华结核和呼吸杂志, 2021, 44(3): 170-205.
|
15. |
荆雨. 基于干血滴质谱代谢组学方法区分结直肠癌和结直肠息肉的研究[D]. 锦州医科大学, 2017.
|
16. |
Vahid I, Abdolali B, Fatemeh M, et al. The effects of branch-chain amino acids on fatigue in the athletes. Interv Med Appl Sci, 2018, 10(4): 233-235.
|
17. |
Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond), 2018, 15: 33.
|
18. |
Yoneda T, Yoshikawa M, Fu A, et al. Plasma levels of amino acids and hypermetabolism in patients with chronic obstructive pulmonary disease. Nutrition, 2001, 17(2): 95-99.
|
19. |
Engelen MP, De Castro CL, Rutten EP, et al. Enhanced anabolic response to milk protein sip feeding in elderly subjects with COPD is associated with a reduced splanchnic extraction of multiple amino acids. Clin Nutr, 2012, 31(5): 616-624.
|
20. |
Oliveira GP, De Abreu MG, Pelosi P, et al. Exogenous glutamine in respiratory diseases: myth or reality?. Nutrients, 2016, 8(2): 76.
|
21. |
张凡, 严会超, 王修启, 等. 碱性氨基酸转运载体基因在骨骼肌中的表达规律及其调控. 动物营养学报, 2019, 31(2): 567-574.
|
22. |
贺洪, 刘建红, 黄金丽, 等. 运动中补充支链氨基酸对肌肉代谢的影响. 中国运动医学杂志, 2004, 23(4): 461-464.
|
23. |
Vendelbo MH, Møller AB, Christensen B, et al. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling. PLoS One, 2014, 9(7): 102031.
|
24. |
Kuo WK, Liu YC, Chu CM, et al. Amino acid-based metabolic indexes identify patients with chronic obstructive pulmonary disease and further discriminates patients in advanced BODE stages. Int J Chron Obstruct Pulmon Dis, 2019, 14: 2257-2266.
|
25. |
Sirniö P, Väyrynen JP, Klintrup K, et al. Alterations in serum amino-acid profile in the progression of colorectal cancer: associations with systemic inflammation, tumour stage and patient survival. Br J Cancer, 2019, 120(2): 238-246.
|