1. |
Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health study): a national cross-sectional study. Lancet, 2018, 391(10131): 1706-1717.
|
2. |
Henrot P, Prevel R, Berger P, et al. Chemokines in COPD: from implication to therapeutic Use. Int J Mol Sci, 2019, 20(11): 2785.
|
3. |
Barnes PJ. Inflammatory endotypes in COPD. Allergy, 2019, 74(7): 1249-1256.
|
4. |
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J, 2018, 285(16): 2944-2971.
|
5. |
Kaur M, Singh D. Neutrophil chemotaxis caused by chronic obstructive pulmonary disease alveolar macrophages: the role of CXCL8 and the receptors CXCR1/CXCR2. J Pharmacol Exp Ther, 2013, 347(1): 173-180.
|
6. |
Zhang J, Bai C. The significance of serum interleukin-8 in acute exacerbations of chronic obstructive pulmonary disease. Tanaffos, 2018, 17(1): 13-21.
|
7. |
Damiá Ade D, Gimeno JC, Ferrer MJ, et al. A study of the effect of proinflammatory cytokines on the epithelial cells of smokers, with or without COPD. Arch Bronconeumol, 2011, 47(9): 447-453.
|
8. |
丁明, 袁成, 李萍, 等. 稳定期慢性阻塞性肺疾病患者肺泡灌洗液中IL-8、IL-17水平的相关性研究. 南京医科大学学报, 2019, 39(6): 884-889.
|
9. |
Patel IS, Seemungal TA, Wilks M, et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax, 2002, 57(9): 759-764.
|
10. |
Nakamoto K, Watanabe M, Sada M, et al. Pseudomonas aeruginosa-derived flagellin stimulates IL-6 and IL-8 production in human bronchial epithelial cells: a potential mechanism for progression and exacerbation of COPD. Exp Lung Res, 2019, 45(8): 255-266.
|
11. |
Alcantara C, Almeida BR, Barros BCSC, et al. Histoplasma capsulatum chemotypes I and II induce IL-8 secretion in lung epithelial cells in distinct manners. Med Mycol, 2020, 58(8): 1169-1177.
|
12. |
Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol, 2011, 89(2): 207-215.
|
13. |
Saetta M, Mariani M, Panina-Bordignon P, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2002, 165(10): 1404-1409.
|
14. |
Costa C, Rufino R, Traves SL, et al. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD. Chest, 2008, 133(1): 26-33.
|
15. |
Freeman CM, Curtis JL, Chensue SW. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity. Am J Pathol, 2007, 171(3): 767-776.
|
16. |
Costa C, Traves SL, Tudhope SJ, et al. Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD. Eur Respir J, 2016, 47(4): 1093-1102.
|
17. |
Vitenberga Z, Pilmane M, Babjoniševa A. The evaluation of inflammatory, anti-inflammatory and regulatory factors contributing to the pathogenesis of COPD in airways. Pathol Res Pract, 2019, 215(1): 97-105.
|
18. |
Sauty A, Dziejman M, Taha RA, et al. The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J Immunol, 1999, 162(6): 3549-3558.
|
19. |
Clarke DL, Clifford RL, Jindarat S, et al. TNFα and IFNγ synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-κB, and the transcriptional coactivator CREB-binding protein. J Biol Chem, 2010, 285(38): 29101-29110.
|
20. |
Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med, 2004, 1(1): e8.
|
21. |
Li L, Liu Y, Chiu C, et al. A regulatory role of chemokine receptor CXCR3 in the pathogenesis of chronic obstructive pulmonary disease and emphysema. Inflammation, 2021, 44(3): 985-998.
|
22. |
Isles HM, Herman KD, Robertson AL, et al. The CXCL12/CXCR4 signaling axis retains neutrophils at inflammatory sites in zebrafish. Front Immunol, 2019, 10: 1784.
|
23. |
Dupin I, Allard B, Ozier A, et al. Blood fibrocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a CXCR4-dependent pathway. J Allergy Clin Immunol, 2016, 137(4): 1036-1042.e7.
|
24. |
Dupin I, Thumerel M, Maurat E, et al. Fibrocyte accumulation in the airway walls of COPD patients. Eur Respir J, 2019, 54(3): 1802173.
|
25. |
李黎明, 梁利, 潘云. 稳定期慢性阻塞性肺疾病患者血清SDF-1、CXCR4表达及与肺功能和CAT评分的关系. 中国医师杂志, 2019, 21(5): 743-745.
|
26. |
Day C, Patel R, Guillen C, et al. The chemokine CXCL16 is highly and constitutively expressed by human bronchial epithelial cells. Exp Lung Res, 2009, 35(4): 272-283.
|
27. |
Marques P, Collado A, Escudero P, et al. Cigarette smoke increases endothelial CXCL16-leukocyte CXCR6 adhesion in vitro and in vivo. Potential consequences in chronic obstructive pulmonary disease. Front Immunol, 2017, 8: 1766.
|
28. |
Inui T, Watanabe M, Nakamoto K, et al. Bronchial epithelial cells produce CXCL1 in response to LPS and TNFα: a potential role in the pathogenesis of COPD. Exp Lung Res, 2018, 44(7): 323-331.
|
29. |
Chen J, Dai L, Wang T, et al. The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD. Ann Med, 2019, 51(5-6): 314-329.
|
30. |
Di Stefano A, Caramori G, Gnemmi I, et al. Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD. Thorax, 2009, 64(11): 968-975.
|
31. |
Mahler DA, Huang S, Tabrizi M, et al. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest, 2004, 126(3): 926-934.
|
32. |
Rennard SI, Dale DC, Donohue JF, et al. CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2015, 191(9): 1001-1011.
|
33. |
Lazaar AL, Miller BE, Tabberer M, et al. Effect of the CXCR2 antagonist danirixin on symptoms and health status in COPD. Eur Respir J, 2018, 52(4): 1801020.
|
34. |
Lazaar AL, Miller BE, Donald AC, et al. CXCR2 antagonist for patients with chronic obstructive pulmonary disease with chronic mucus hypersecretion: a phase 2b trial. Respir Res, 2020, 21(1): 149.
|
35. |
Jing H, Liu L, Zhou J, et al. Inhibition of C-X-C motif chemokine 10 (CXCL10) protects mice from cigarette smoke-induced chronic obstructive pulmonary disease. Med Sci Monit, 2018, 24: 5748-5753.
|
36. |
Barwinska D, Oueini H, Poirier C, et al. AMD3100 ameliorates cigarette smoke-induced emphysema-like manifestations in mice. Am J Physiol Lung Cell Mol Physiol, 2018, 315(3): L382-L386.
|