1. |
Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859): 2095-2128.
|
2. |
Douglas IS. Pulmonary infections in critical/intensive care - rapid diagnosis and optimizing antimicrobial usage. Curr Opin Pulm Med, 2017, 23(3): 198-203.
|
3. |
周友全, 马俊超, 郭凤丽, 等. 需氧血培养细菌种类及仪器报警时间分析. 国际检验医学杂志, 2013, 34(23): 3220-3221.
|
4. |
中国研究型医院学会呼吸病学专业委员会, 成人呼吸系统感染性疾病病原学诊断专家意见编写组. 成人呼吸系统感染性疾病病原学诊断专家意见. 中华结核和呼吸杂志, 2020, 43(9): 757-764.
|
5. |
Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl), 2020, 133(9): 1015-1024.
|
6. |
朱美利, 张剑青, 赵芝焕. 宏基因组测序在感染性疾病诊治中的应用进展. 实用医学杂志, 2020, 36(2): 131-135.
|
7. |
Subramony A, Zachariah P, Krones A, et al. Impact of multiplex polymerase chain reaction testing for respiratory pathogens on healthcare resource utilization for pediatric inpatients. J Pediatr, 2016, 173: 196-201.
|
8. |
王小红, 董晨明, 杨朝辉. 多重PCR技术在呼吸系统疾病微生物检测中的应用进展. 中国急救复苏与灾害医学杂志, 2012, 7(6): 570-571.
|
9. |
Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000, 28(12): E63.
|
10. |
杨家树, 戚丽华, 吴方, 等. 微流控LAMP技术在呼吸道病原体检测中的临床应用进展. 国际检验医学杂志, 2020, 41(13): 1645-1648.
|
11. |
Gordon SM, Szidon JP, Krotoszynski BK, et al. Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem, 1985, 31(8): 1278-1282.
|
12. |
Kramer R, Sauer-Heilborn A, Welte T, et al. A rapid method for breath analysis in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis, 2015, 34(4): 745-751.
|
13. |
Schnabel R, Fijten R, Smolinska A, et al. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci Rep, 2015, 5: 17179.
|
14. |
王鑫, 荆聪蕊, 侯凯旋, 等. 基于TDLAS技术的人体呼气末CO2在线检测. 中国激光, 2020, 47(3): 290-296.
|
15. |
Ciloglu FU, Caliskan A, Saridag AM, et al. Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniques. Sci Rep, 2021, 11(1): 18444.
|
16. |
van de Goor R, van Hooren M, Dingemans AM, et al. Training and validating a portable electronic nose for lung cancer screening. J Thorac Oncol, 2018, 13(5): 676-681.
|
17. |
Purcaro G, Rees CA, Wieland-Alter WF, et al. Volatile fingerprinting of human respiratory viruses from cell culture. J Breath Res, 2018, 12(2): 026015.
|
18. |
Borras E, McCartney MM, Thompson CH, et al. Exhaled breath biomarkers of influenza infection and influenza vaccination. J Breath Res, 2021, 15(4): 10.1088/1752-7163/ac1a61.
|
19. |
Chen HX, Qi X, Zhang L, et al. COVID-19 screening using breath-borne volatile organic compounds. J Breath Res, 2021, 15(4).
|
20. |
Ibrahim W, Cordell RL, Wilde MJ, et al. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography-mass spectrometry. ERJ Open Res, 2021, 7(3): 00139-2021.
|
21. |
Grassin-Delyle S, Roquencourt C, Moine P, et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine, 2021, 63: 103154.
|
22. |
Berna AZ, Akaho EH, Harris RM, et al. Reproducible breath metabolite changes in children with SARS-CoV-2 infection. ACS Infect Dis, 2021, 7(9): 2596-2603.
|
23. |
Shan B, Broza YY, Li W, et al. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS nano, 2020, 14(9): 12125-12132.
|
24. |
Wintjens A, Hintzen K, Engelen S, et al. Applying the electronic nose for pre-operative SARS-CoV-2 screening. Surg Endosc, 2021, 35(12): 6671-6678.
|
25. |
Zamora-Mendoza BN, Diaz DLL, Rodriguez-Aguilar M, et al. Chemometric analysis of the global pattern of volatile organic compounds in the exhaled breath of patients with COVID-19, post-COVID and healthy subjects. Proof of concept for post-COVID assessment. Talanta, 2022, 236: 122832.
|
26. |
Rodríguez-Aguilar M, Díaz de León-Martínez L, Zamora-Mendoza BN, et al. Comparative analysis of chemical breath-prints through olfactory technology for the discrimination between SARS-CoV-2 infected patients and controls. Clin Chim Acta, 2021, 519: 126-132.
|
27. |
Kos R, Brinkman P, Neerincx AH, et al. Targeted exhaled breath analysis for detection of Pseudomonas aeruginosa in cystic fibrosis patients. J Cyst Fibros, 2022, 21(1): e28-e34.
|
28. |
Filipiak W, Sponring A, Baur MM, et al. Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS. Microbiology (Reading), 2012, 158(Pt 12): 3044-3053.
|
29. |
Savelev SU, Perry JD, Bourke SJ, et al. Volatile biomarkers of Pseudomonas aeruginosa in cystic fibrosis and noncystic fibrosis bronchiectasis. Lett Appl Microbiol, 2011, 52(6): 610-613.
|
30. |
Purcaro G, Rees CA, Melvin JA, et al. Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model. J Breath Res, 2018, 12(4): 046001.
|
31. |
Karami N, Karimi A, Aliahmadi A, et al. Identification of bacteria using volatile organic compounds. Cell Mol Biol (Noisy-le-grand), 2017, 63(2): 112-121.
|
32. |
Boots AW, Smolinska A, van Berkel JJ, et al. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. J Breath Res, 2014, 8(2): 027106.
|
33. |
van Oort PM, Brinkman P, Slingers G, et al. Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: a proof-of-concept study. Am J Physiol Lung Cell Mol Physiol, 2019, 316(5): L751-L756.
|
34. |
Zhu J, Bean HD, Wargo MJ, et al. Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints. J Breath Res, 2013, 7(1): 016003.
|
35. |
Nizio KD, Perrault KA, Troobnikoff AN, et al. In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. J Breath Res, 2016, 10(2): 026008.
|
36. |
Joensen O, Paff T, Haarman EG, et al. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections. PLoS One, 2014, 9(12): e115584.
|
37. |
John TM, Shrestha NK, Procop GW, et al. Diagnosis of Clostridioides difficile infection by analysis of volatile organic compounds in breath, plasma, and stool: A cross-sectional proof-of-concept study. PLoS One, 2021, 16(8): e256259.
|
38. |
Gao J, Zou Y, Wang Y, et al. Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. J Breath Res, 2016, 10(2): 027102.
|
39. |
van Oort PM, Nijsen T, Weda H, et al. BreathDx - molecular analysis of exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multicentre observational study. BMC Pulm Med, 2017, 17(1): 1.
|
40. |
Bean HD, Zhu J, Sengle JC, et al. Identifying methicillin-resistant Staphylococcus aureus (MRSA) lung infections in mice via breath analysis using secondary electrospray ionization-mass spectrometry (SESI-MS). J Breath Res, 2014, 8(4): 041001.
|
41. |
Chambers ST, Bhandari S, Scott-Thomas A, et al. Novel diagnostics: progress toward a breath test for invasive Aspergillus fumigatus. Med Mycol, 2011, 49(S1): S54-S61.
|
42. |
de Heer K, van der Schee MP, Zwinderman K, et al. Electronic nose technology for detection of invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study. J Clin Microbiol, 2013, 51(5): 1490-1495.
|
43. |
Gerritsen MG, Brinkman P, Escobar N, et al. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry. Med Mycol, 2018, 56(2): 253-256.
|