1. |
Holzmann B, Weissman IL. Integrin molecules involved in lymphocyte homing to Peyer's patches. Immunol Rev, 1989, 108: 45-61.
|
2. |
Milutinovic S, Abe J, Godkin A, et al. The dual role of high endothelial venules in cancer progression versus immunity. Trends Cancer, 2021, 7(3): 214-225.
|
3. |
Vella G, Guelfi S, Bergers G. High endothelial venules: a vascular perspective on tertiary lymphoid structures in cancer. Front Immunol, 2021, 12: 736670.
|
4. |
Dieu-Nosjean MC, Goc J, Giraldo NA, et al. Tertiary lymphoid structures in cancer and beyond. Trends Immunol, 2014, 35(11): 571-80.
|
5. |
Allen E, Jabouille A, Rivera LB, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med, 2017, 9(385): eaak9679.
|
6. |
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis, 2021, 24(4): 719-753.
|
7. |
Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond), 2017, 131(13): 1541-1558.
|
8. |
Barnes PJ. Inflammatory endotypes in COPD. Allergy, 2019, 74(7): 1249-1256.
|
9. |
Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J, 2019, 54(2): 1900651.
|
10. |
Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med, 2004, 350(26): 2645-2653.
|
11. |
Adams TS, Schupp JC, Poli S, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv, 2020, 6(28): eaba1983.
|
12. |
Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol, 2018, 36(5): 411-420.
|
13. |
Aljanahi AA, Danielsen M, Dunbar CE. An introduction to the analysis of single-cell RNA-sequencing data. Mol Ther Methods Clin Dev, 2018, 10: 189-196.
|
14. |
Mercer TR, Neph S, Dinger ME, et al. The human mitochondrial transcriptome. Cell, 2011, 146(4): 645-658.
|
15. |
Vallejos CA, Risso D, Scialdone A, et al. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods, 2017, 14(6): 565-571.
|
16. |
Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods, 2019, 16(12): 1289-1296.
|
17. |
Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet, 2019, 20(5): 273-282.
|
18. |
Foroutan M, Bhuva DD, Lyu R, et al. Single sample scoring of molecular phenotypes. BMC Bioinformatics, 2018, 19(1): 404.
|
19. |
Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol, 2020, 7(8): e575-e582.
|
20. |
Schupp JC, Adams TS, Cosme C Jr, et al. Integrated single-cell atlas of endothelial cells of the human lung. Circulation, 2021, 144(4): 286-302.
|
21. |
Travaglini KJ, Nabhan AN, Penland L, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature, 2020, 587(7835): 619-625.
|
22. |
Pan Y, Wang WD, Yago T. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res, 2014, 94: 96-102.
|
23. |
Goveia J, Rohlenova K, Taverna F, et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell, 2020, 37(1): 21-36.e13.
|
24. |
Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods, 2017, 14(11): 1083-1086.
|
25. |
Cao J, Spielmann M, Qiu X, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature, 2019, 566(7745): 496-502.
|
26. |
Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods, 2017, 14(10): 979-982.
|
27. |
Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods, 2020, 17(2): 159-162.
|
28. |
von Andrian UH. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation, 1996, 3(3): 287-300.
|
29. |
Elewa YHA, Ichii O, Takada K, et al. Histopathological correlations between mediastinal fat-associated lymphoid clusters and the development of lung inflammation and fibrosis following bleomycin administration in mice. Front Immunol, 2018, 9: 271.
|
30. |
Frija-Masson J, Martin C, Regard L, et al. Bacteria-driven peribronchial lymphoid neogenesis in bronchiectasis and cystic fibrosis. Eur Respir J, 2017, 49(4): 1601873.
|
31. |
Van Dinther-Janssen AC, Van Maarsseveen TC, Eckert H, et al. Identical expression of ELAM-1, VCAM-1, and ICAM-1 in sarcoidosis and usual interstitial pneumonitis. J Pathol, 1993, 170(2): 157-164.
|
32. |
Colbeck EJ, Jones E, Hindley JP, et al. Treg depletion licenses T cell-driven HEV neogenesis and promotes tumor destruction. Cancer Immunol Res, 2017, 5(11): 1005-1015.
|
33. |
Park HS, Kim YM, Kim S, et al. High endothelial venule is a surrogate biomarker for T-cell inflamed tumor microenvironment and prognosis in gastric cancer. J Immunother Cancer, 2021, 9(10): e003353.
|
34. |
Alter P, Baker Jr, Dauletbaev N, et al. Update in chronic obstructive pulmonary disease 2019. Am J Respir Crit Care Med, 2020, 202(3): 348-355.
|
35. |
Caramori G, Casolari P, Barczyk A, et al. COPD immunopathology. Semin Immunopathol, 2016, 38(4): 497-515.
|
36. |
Gretz JE, Anderson AO, Shaw S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev, 1997, 156: 11-24.
|
37. |
Kumar V, Scandella E, Danuser R, et al. Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell-lymphotoxin-dependent pathway. Blood, 2010, 115(23): 4725-4733.
|
38. |
Veerman K, Tardiveau C, Martins F, et al. Single-cell analysis reveals heterogeneity of high endothelial venules and different regulation of genes controlling lymphocyte entry to lymph nodes. Cell Rep, 2019, 26(11): 3116-3131.e5.
|