1. |
章菲, 王义兵, 吴利东. 新型冠状病毒的相关研究进展. 病毒学报, 2021, 37(2): 422-427.
|
2. |
Zhang L, Lu QJ, Chang C. Epigenetics in health and disease. Adv Exp Med Biol, 2020, 1253: 3-55.
|
3. |
Sen R, Garbati M, Bryant K, et al. Epigenetic mechanisms influencing COVID-19. Genome, 2021, 64(4): 372-385.
|
4. |
Yao XH, Luo T, Shi Y, et al. A cohort autopsy study defines COVID-19 systemic pathogenesis. Cell Res, 2021, 31(8): 836-846.
|
5. |
王霜, 王贵佐, 唐甜, 等. 新型冠状病毒肺炎发病机制及药物治疗研究进展. 陕西医学杂志, 2021, 50(5): 638-641.
|
6. |
Samudrala PK, Kumar P, Choudhary K, et al. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. Eur J Pharmacol, 2020, 883: 173375.
|
7. |
Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med, 2020, 26(4): 450-452.
|
8. |
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483): 1260-1263.
|
9. |
Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance, 2020, 3(9): e202000786.
|
10. |
Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell, 2020, 78(4): 779-784.e775.
|
11. |
Kaneko S, Takasawa K, Asada K, et al. Epigenetic mechanisms underlying COVID-19 pathogenesis. Biomedicines, 2021, 9(9): 1142.
|
12. |
Qin C, Zhou LQ, Hu ZW, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis, 2020, 71(15): 762-768.
|
13. |
Konig MF, Powell M, Staedtke V, et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J Clin Invest, 2020, 130(7): 3345-3347.
|
14. |
Yan L, Cai B, Li Y, et al. Dynamics of NK, CD8 and Tfh cell mediated the production of cytokines and antiviral antibodies in Chinese patients with moderate COVID-19. J Cell Mol Med, 2020, 24(24): 14270-14279.
|
15. |
李俏琦, 杨茜, 高玲, 等. 细胞因子风暴与病毒性肺炎. 中国呼吸与危重监护杂志, 2021, 20(1): 70-75.
|
16. |
赵思敏, 陈正光. 新型冠状病毒肺炎的研究进展. 中国中西医结合影像学杂志, 2021, 19(2): 103-107.
|
17. |
Huang C, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223): 497-506.
|
18. |
Tian SF, Hu WD, Niu L, et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol, 2020, 15(5): 700-704.
|
19. |
Calabrese LH, Lenfant T, Calabrese C. Cytokine storm release syndrome and the prospects for immunotherapy with COVID-19, part 4: The role of JAK inhibition[J/OL]. Cleve Clin J Med. [2021-03-01]. Available at: https://www.ccjm.org/content/ccjom/early/2021/02/24/ccjm.87a.ccc060.full.pdf.
|
20. |
Pruimboom L. Methylation pathways and SARS-CoV-2 lung infiltration and cell membrane-virus fusion are both subject to epigenetics. Front Cell Infect Microbiol, 2020, 10: 290.
|
21. |
Mongelli A, Barbi V, Gottardi Zamperla M, et al. Evidence for biological age acceleration and telomere shortening in COVID-19 survivors. Int J Mol Sci, 2021, 22(11): 6151.
|
22. |
Kucher AN, Babushkina NP, Sleptcov AA, et al. Genetic control of human infection with SARS-CoV-2. Russ J Genet, 2021, 57(6): 627-641.
|
23. |
Sawalha AH, Zhao M, Coit P, et al. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol, 2020, 215: 108410.
|
24. |
Liu RR, Liu XY, Song MJ, et al. Cyprinus carpio TRIF participates in the innate immune response by inducing NF-κB and IFN activation and promoting apoptosis. Front Immunol, 2021, 12: 725150.
|
25. |
Chai PW, Yu J, Ge SF, et al. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. J Hematol Oncol, 2020, 13(1): 43.
|
26. |
Li HM, Xie LX, Chen L, et al. Genomic, epigenomic, and immune subtype analysis of CTSL/B and SARS-CoV-2 receptor ACE2 in pan-cancer. Aging, 2020, 12(22): 22370-22389.
|
27. |
Malato J, Sotzny F, Bauer S, et al. The SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) in myalgic encephalomyelitis/chronic fatigue syndrome: a meta-analysis of public DNA methylation and gene expression data. Heliyon, 2021, 7(8): e07665.
|
28. |
Malato J, Sotzny F, Bauer S, et al. The SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) in myalgic encephalomyelitis/chronic fatigue syndrome: analysis of high-throughput epigenetic and gene expression studies[EB/OL]. medRxiv [Preprint]. [2021-08-08]. Available at: https://www.medrxiv.org/content/10.1101/2021.03.23.21254175v2.
|
29. |
Winkley K, Koseva B, Banerjee D, et al. High-resolution epigenome analysis in nasal samples derived from children with respiratory viral infections reveals striking changes upon SARS-CoV-2 infection[EB/OL]. medRxiv [Preprint]. [2021-03-11]. Available at: https://www.medrxiv.org/content/10.1101/2021.03.09.21253155v1.
|
30. |
Castro de Moura M, Davalos V, Planas-Serra L, et al. Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine, 2021, 66: 103339.
|
31. |
Shirvaliloo M. Epigenomics in COVID-19; the link between DNA methylation, histone modifications and SARS-CoV-2 infection. Epigenomics, 2021, 13(10): 745-750.
|
32. |
Rathod R, Rathod A, Rahimabad PK, et al. Methylation of host genes associated with coronavirus infection from birth to 26 years. Genes (Basel), 2021, 12(8): 1198.
|
33. |
Paniri A, Hosseini MM, Rasoulinejad A, et al. Molecular effects and retinopathy induced by hydroxychloroquine during SARS-CoV-2 therapy: role of CYP450 isoforms and epigenetic modulations. Eur J Pharmacol, 2020, 886: 173454.
|
34. |
Ahmad S, Wen Y, Irudayaraj JMK. PFOA induces alteration in DNA methylation regulators and SARS-CoV-2 targets Ace2 and Tmprss2 in mouse lung tissues. Toxicol Rep, 2021, 8: 1892-1898.
|
35. |
Natarelli L, Virgili F, Weber C. SARS-CoV-2, cardiovascular diseases, and noncoding RNAs: a connected triad. Int J Mol Sci, 2021, 22(22): 12243.
|
36. |
Talotta R, Bahrami S, Laska MJ. Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: what are the implications for human health?. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(2): 166291.
|
37. |
Khan MA, Sany MRU, Islam MS, et al. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front Genet, 2020, 11: 765.
|
38. |
Çetin Z, Bayrak T, Oğul H, et al. Predicted SARS-CoV-2 miRNAs associated with epigenetic viral pathogenesis and the detection of new possible drugs for Covid-19. Curr Drug Deliv, 2021, 18(10): 1595-1610.
|
39. |
Widiasta A, Sribudiani Y, Nugrahapraja H, et al. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy. Noncoding RNA Res, 2020, 5(4): 153-166.
|
40. |
Arora S, Singh P, Dohare R, et al. Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19). Gene, 2020, 762: 145057.
|
41. |
Pawlica P, Yario TA, White S, et al. SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proc Natl Acad Sci U S A, 2021, 118(52): e2116668118.
|
42. |
Dash S, Dash C, Pandhare J. Therapeutic significance of microRNA-mediated regulation of PARP-1 in SARS-CoV-2 infection. Noncoding RNA, 2021, 7(4): 60.
|
43. |
Alam T, Lipovich L. miRCOVID-19: potential targets of human miRNAs in SARS-CoV-2 for RNA-based drug discovery. Non-coding RNA, 2021, 7(1): 18.
|
44. |
Tang H, Gao YH, Li ZH, et al. The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19. Clin Transl Med, 2020, 10(6): e200.
|
45. |
Turjya RR, Khan MA, Mir Md Khademul Islam AB. Perversely expressed long noncoding RNAs can alter host response and viral proliferation in SARS-CoV-2 infection. Future Virol, 2020, 15(9): 577-593.
|
46. |
Wu YP, Zhao TJ, Deng RQ, et al. A study of differential circRNA and lncRNA expressions in COVID-19-infected peripheral blood. Sci Rep, 2021, 11(1): 7991.
|
47. |
Paniri A, Akhavan-Niaki H. Emerging role of IL-6 and NLRP3 inflammasome as potential therapeutic targets to combat COVID-19: Role of lncRNAs in cytokine storm modulation. Life Sci, 2020, 257: 118114.
|
48. |
Laha S, Saha C, Dutta S, et al. In silico analysis of altered expression of long non-coding RNA in SARS-CoV-2 infected cells and their possible regulation by STAT1, STAT3 and interferon regulatory factors. Heliyon, 2021, 7(3): e06395.
|
49. |
Mukherjee S, Banerjee B, Karasik D, et al. mRNA-lncRNA co-expression network analysis reveals the role of lncRNAs in immune dysfunction during severe SARS-CoV-2 Infection. Viruses, 2021, 13(3): 402.
|
50. |
Vishnubalaji R, Shaath H, Alajez NM. Protein coding and long noncoding RNA (lncRNA) transcriptional landscape in SARS-CoV-2 infected bronchial epithelial cells highlight a role for interferon and inflammatory response. Genes (Basel), 2020, 11(7): 760.
|
51. |
Rodrigues AC, Adamoski D, Genelhould G, et al. NEAT1 and MALAT1 are highly expressed in saliva and nasopharyngeal swab samples of COVID-19 patients. Mol Oral Microbiol, 2021, 36(6): 291-294.
|
52. |
Moazzam-Jazi M, Lanjanian H, Maleknia S, et al. Interplay between SARS-CoV-2 and human long non-coding RNAs. J Cell Mol Med, 2021, 25(12): 5823-5827.
|
53. |
Sabetian S, Castiglioni I, Jahromi BN, et al. In silico identification of miRNA-lncRNA interactions in male reproductive disorder associated with COVID-19 infection. Cells, 2021, 10(6): 1480.
|
54. |
Taheri M, Rad LM, Hussen BM, et al. Evaluation of expression of VDR-associated lncRNAs in COVID-19 patients. BMC Infect Dis, 2021, 21(1): 588.
|
55. |
Zhang YJ, Sun ZX, Jia JQ, et al. Overview of histone modification. Adv Exp Med Biol, 2021, 1283: 1-16.
|
56. |
Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19[EB/OL]. medRxiv [Preprint]. [2020-03-27]. Available at: https://www.medrxiv.org/content/10.1101/2020.03.21.20040261v1.
|
57. |
Li YY, Li HG, Zhou LQ. EZH2-mediated H3K27me3 inhibits ACE2 expression. Biochem Biophys Res Commun, 2020, 526(4): 947-952.
|
58. |
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, et al. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev, 2020, 54: 62-75.
|
59. |
Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med, 2020, 26(7): 1070-1076.
|
60. |
Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight, 2020, 5(11): e138999.
|
61. |
Liu K, Zou RF, Cui WQ, et al. Clinical HDAC inhibitors are effective drugs to prevent the entry of SARS-CoV2. ACS Pharmacol Transl Sci, 2020, 3(6): 1361-1370.
|
62. |
Teodori L, Sestili P, Madiai V, et al. MicroRNAs bioinformatics analyses identifying HDAC pathway as a putative target for existing anti-COVID-19 therapeutics. Front Pharmacol, 2020, 11: 582003.
|
63. |
Pitt B, Sutton NR, Wang Z, et al. Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19. Eur J Pharmacol, 2021, 898: 173988.
|
64. |
Kim JM, Chung YS, Jo HJ, et al. Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong Public Health Res Perspect, 2020, 11(1): 3-7.
|