1. |
Williams GW, Berg NK, Reskallah A, et al. Acute respiratory distress syndrome. Anesthesiology, 2021, 134(2): 270-282.
|
2. |
Hung CF, Holton S, Chow YH, et al. Pericyte-like cells undergo transcriptional reprogramming and distinct functional adaptations in acute lung injury. FASEB J, 2021, 35(4): e21323.
|
3. |
Skowrońska M, Skrzyńska M, Machowski M, et al. Plasma growth differentiation factor 15 levels for predicting serious adverse events and bleeding in acute pulmonary embolism: a prospective observational study. Pol Arch Intern Med, 2020, 130(9): 757-765.
|
4. |
Ebrahimi F, Wolffenbuttel C, Blum CA, et al. Fibroblast growth factor 21 predicts outcome in community-acquired pneumonia: secondary analysis of two randomised controlled trials. Eur Respir J, 2019, 53(2): 1800973.
|
5. |
Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23): 2526-2533.
|
6. |
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet, 2021, 398(10300): 622-637.
|
7. |
刘胜岗, 杨红忠. 血管生成素样蛋白4(Angptl4)在肺纤维化过程中的作用. 中国医师杂志, 2018, 20(5): 712-714,719.
|
8. |
Wu YQ, Shen YC, Wang H, et al. Serum angiopoietin-like 4 is over-expressed in COPD patients: association with pulmonary function and inflammation. Eur Rev Med Pharmacol Sci, 2016, 20(1): 44-53.
|
9. |
Song HY, Chen Q, Xie SP, et al. GDF-15 prevents lipopolysaccharide-mediated acute lung injury via upregulating SIRT1. Biochem Biophys Res Commun, 2020, 526(2): 439-446.
|
10. |
Gao J, Liu QH, Li JL, et al. Fibroblast growth factor 21 dependent TLR4/MYD88/NF-κB signaling activation is involved in lipopolysaccharide-induced acute lung injury. Int Immunopharmacol, 2020, 80(3): 106219.
|
11. |
Li L, Foo BJW, Kwok KW, et al. Antibody treatment against angiopoietin-like 4 reduces pulmonary edema and injury in secondary pneumococcal pneumonia. mBio, 2019, 10(3): e02469-18.
|
12. |
Rosenberg BJ, Hirano M, Quinzii CM, et al. Growth differentiation factor-15 as a biomarker of strength and recovery in survivors of acute respiratory failure. Thorax, 2019, 74(11): 1099-1101.
|
13. |
张放, 郭树彬, 姬文卿, 等. 外周血成纤维细胞生长因子-21在脓毒症及感染性休克中的表达. 中国急救医学, 2020, 40(7): 644-648.
|
14. |
Sehgal IS, Agarwal R, Dhooria S, et al. Risk stratification of acute respiratory distress syndrome using a PaO2: FiO2 threshold of 150 mmHg: a retrospective analysis from an Indian intensive care unit. Lung India, 2020, 37(6): 473-478.
|
15. |
Yoo JW, Ju SM, Lee SJ, et al. Geriatric nutritional risk index is associated with 30-day mortality in patients with acute respiratory distress syndrome. Medicine (Baltimore), 2020, 99(25): e20671.
|
16. |
Hu J, Liu L, Zeng XH, et al. Prognostic value of angiopoietin-like 4 in patients with acute respiratory distress syndrome. Shock, 2021, 56(3): 403-411.
|
17. |
尚明升, 高延秋, 贾宝辉, 等. 生长分化因子-15和血管外肺水指数在ARDS患者严重程度分级及预后预测中的价值. 中华危重病急救医学, 2020, 32(10): 1226-1230.
|
18. |
Li X, Shen H, Zhou TH, et al. Does an increase in serum FGF21 level predict 28-day mortality of critical patients with sepsis and ARDS?. Respir Res, 2021, 22(1): 182.
|