1. |
Wedzicha JA, Miravitlles M, Hurst JR, et al. Management of COPD Exacerbations: a European Respiratory Society/American Thoracic Society Guideline. Eur Respir J, 2017, 49(3): 1600791.
|
2. |
Halpin DMG, Criner GJ, Papi A, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2021, 203(1): 24-36.
|
3. |
Ko FW, Chan KP, Hui DS, et al. Acute exacerbation of COPD. Respirology, 2016, 21(7): 1152-1165.
|
4. |
Erhabor GE, Adeniyi B, Arawomo AO, et al. Acute exacerbation of COPD: clinical perspectives and literature review. West Afr J Med, 2021, 38(11): 1129-1142.
|
5. |
Hillas G, Perlikos F, Tzanakis N. Acute exacerbation of COPD: is it the "stroke of the lungs"?. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1579-1586.
|
6. |
张蕊, 郑黎强, 潘国伟. 疾病发病风险预测模型的应用与建立. 中国卫生统计, 2015, 32(4): 724-726.
|
7. |
Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
8. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
9. |
王明航, 蔡坤坤, 施丁莉, 等. 基于回归分析法建立慢性阻塞性肺疾病急性加重风险预测模型与验证. 中华危重病急救医学, 2021, 33(1): 64-68.
|
10. |
陈雪影. 建立预测重度慢性阻塞性肺疾病急性加重风险列线图. 华中科技大学, 2020. DOI: 10.27157/d.cnki.ghzku.2020.004276.
|
11. |
张瑞, 吴珍珍, 常艳, 等. 老年慢性阻塞性肺疾病患者30天内急性加重再入院风险预测模型的构建与验证. 中国呼吸与危重监护杂志, 2021, 20(7): 457-464.
|
12. |
Wu CT, Li GH, Huang CT, et al. Acute exacerbation of a chronic obstructive pulmonary disease prediction system using wearable device data, machine learning, and deep learning: development and cohort study. JMIR Mhealth Uhealth, 2021, 9(5): e22591.
|
13. |
Kor CT, Li YR, Lin PR, et al. Explainable machine learning model for predicting first-time acute exacerbation in patients with chronic obstructive pulmonary disease. J Pers Med, 2022, 12(2): 228.
|
14. |
Bertens LC, Reitsma JB, Moons KG, et al. Development and validation of a model to predict the risk of exacerbations in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2013, 8: 493-499.
|
15. |
Yii A, Loh CH, Tiew PY, et al. A clinical prediction model for hospitalized COPD exacerbations based on "treatable traits". Int J Chron Obstruct Pulmon Dis, 2019, 14: 719-728.
|
16. |
Samp JC, Joo MJ, Schumock GT, et al. Predicting acute exacerbations in chronic obstructive pulmonary disease. J Manag Care Spec Pharm, 2018, 24(3): 265-279.
|
17. |
Tavakoli H, Chen W, Sin DD, et al. Predicting severe chronic obstructive pulmonary disease exacerbations. Developing a population surveillance approach with administrative data. Ann Am Thorac Soc, 2020, 17(9): 1069-1076.
|
18. |
Amalakuhan B, Kiljanek L, Parvathaneni A, et al. A prediction model for COPD readmissions: catching up, catching our breath, and improving a national problem. J Community Hosp Intern Med Perspect, 2012, 2(1): 9915.
|
19. |
Shah SA, Velardo C, Farmer A, et al. Exacerbations in chronic obstructive pulmonary disease: identification and prediction using a digital health system. J Med Internet Res, 2017, 19(3): e69.
|
20. |
Yoon HY, Park SY, Lee CH, et al. Prediction of first acute exacerbation using COPD subtypes identified by cluster analysis. Int J Chron Obstruct Pulmon Dis, 2019, 14: 1389-1397.
|
21. |
Adibi A, Sin DD, Safari A, et al. The Acute COPD Exacerbation Prediction Tool (ACCEPT): a modelling study. Lancet Respir Med, 2020, 8(10): 1013-1021.
|
22. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.
|
23. |
Retamales I, Elliott WM, Meshi B, et al. Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med, 2001, 164(3): 469-473.
|
24. |
Hacievliyagil SS, Gunen H, Mutlu LC, et al. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. Respir Med, 2006, 100(5): 846-854.
|
25. |
Takabatake N, Nakamura H, Abe S, et al. The relationship between chronic hypoxemia and activation of the tumor necrosis factor-α system in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2000, 161(4 Pt 1): 1179-1184.
|
26. |
Lee SJ, Lee HR, Lee TW, et al. Usefulness of neutrophil to lymphocyte ratio in patients with chronic obstructive pulmonary disease: a prospective observational study. Korean J Intern Med, 2016, 31(5): 891-898.
|
27. |
Miravitlles M, Llor C. Non-eosinophilic severe exacerbations of COPD: what about antibiotics?. Lancet Respir Med, 2019, 7(11): e33.
|
28. |
Avdeev SN, Nuralieva GS, Gainitdinova VV, et al. Clinical efficacy of mechanical bacterial lysate in the prevention of infectious exacerbations of chronic obstructive pulmonary disease. Ter Arkh, 2020, 92(4): 57-63.
|
29. |
孙泽丽, 丁国正. 慢性阻塞性肺疾病频繁急性加重的影响因素分析. 中国医药导报, 2021, 18(13): 85-88,197.
|
30. |
陈幼丽, 陈伟文, 林天来. 慢性阻塞性肺疾病患者发生撤机相关肺水肿的研究进展. 中国呼吸与危重监护杂志, 2021, 20(6): 447-451.
|
31. |
Zhang JX, Bai C. The significance of serum interleukin-8 in acute exacerbations of chronic obstructive pulmonary disease. Tanaffos, 2018, 17(1): 13-21.
|
32. |
黄慧琴, 邹燕, 李勇, 等. 福州地区慢性阻塞性肺病急性发作与气象因素的相关性分析及其预警模型的初步探讨. 福建医药杂志, 2020, 42(1): 23-26.
|