1. |
胡大鹏, 鲍文华, 孙云晖, 等. 慢性阻塞性肺疾病易感基因研究进展. 中国老年保健医学, 2016, 14(6): 3-6.
|
2. |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
3. |
Matta JA, Gu SY, Davini WB, et al. Nicotinic acetylcholine receptor redux: discovery of accessories opens therapeutic vistas. Science, 2021, 373(6556): eabg6539.
|
4. |
Takahashi T. Roles of nAChR and Wnt signaling in intestinal stem cell function and inflammation. Int Immunopharmacol, 2020, 81: 106260.
|
5. |
Scholze P, Huck S. The α5 nicotinic acetylcholine receptor subunit differentially modulates α4β2* and α3β4* receptors. Front Synaptic Neurosci, 2020, 12: 607959.
|
6. |
Cheng WL, Chen KY, Lee KY, et al. Nicotinic-nAChR signaling mediates drug resistance in lung cancer. J Cancer, 2020, 11(5): 1125-1140.
|
7. |
Gu X, Wang XY. An overview of recent analysis and detection of acetylcholine. Anal Biochem, 2021, 632: 114381.
|
8. |
Hollenhorst MI, Krasteva-Christ G. Nicotinic acetylcholine receptors in the respiratory tract. Molecules, 2021, 26(20): 6097.
|
9. |
Kummer W, Lips KS, Pfeil U. The epithelial cholinergic system of the airways. Histochem Cell Biol, 2008, 130(2): 219-234.
|
10. |
Kumar P, Scholze P, Fronius M, et al. Nicotine stimulates ion transport via metabotropic β4 subunit containing nicotinic ACh receptors. Br J Pharmacol, 2020, 177(24): 5595-5608.
|
11. |
Nielsen BE, Minguez T, Bermu De ZI, et al. Molecular function of the novel α7β2 nicotinic receptor. Cell Mol Life Sci, 2018, 75(13): 2457-2471.
|
12. |
Lustig LR. Nicotinic acetylcholine receptor structure and function in the efferent auditory system. Anat Rec A Discov Mol Cell Evol Biol, 2006, 288(4): 424-434.
|
13. |
Chen XK, Zhang Q, Yang ZZ, et al. An SNP reducing SNORD105 and PPAN expression decreases the risk of hepatocellular carcinoma in a Chinese population. J Clin Lab Anal, 2021, 35(12): e24095.
|
14. |
Liu Y, Shen H, Greenbaum J, et al. Gene expression and RNA splicing imputation identifies novel candidate genes associated with osteoporosis. J Clin Endocrinol Metab, 2020, 105(12): e4742-e4757.
|
15. |
Buhelt S, Laigaard HM, von Essen MR, et al. IL-2RA methylation and gene expression in relation to the multiple sclerosis-associated gene variant rs2104286 and soluble IL-2Rα in CD8+ T cells. Front Immunol, 2021, 12: 676141.
|
16. |
Shigemasa R, Masuko H, Hyodo K, et al. Genetic impact of CDHR3 on the adult onset of asthma and COPD. Clin Exp Allergy, 2020, 50(11): 1223-1229.
|
17. |
Labaki WW, Rosenberg SR. Chronic obstructive pulmonary disease. Ann Intern Med, 2020, 173(3): ITC17-ITC32.
|
18. |
Grahn K, Gustavsson P, Andersson T, et al. Occupational exposure to particles and increased risk of developing chronic obstructive pulmonary disease (COPD): a population-based cohort study in Stockholm, Sweden. Environ Res, 2021, 200: 111739.
|
19. |
Saleh S, Shepherd W, Jewell C, et al. Air pollution interventions and respiratory health: a systematic review. Int J Tuberc Lung Dis, 2020, 24(2): 150-164.
|
20. |
Fazleen A, Wilkinson T. Early COPD: current evidence for diagnosis and management. Ther Adv Respir Dis, 2020, 14: 1753466620942128.
|
21. |
Picciotto MR, Kenny PJ. Mechanisms of nicotine addiction. Cold Spring Harb Perspect Med, 2021, 11(5): a039610.
|
22. |
Zhao L, Zou LY, Cheng BF, et al. Chronic obstructive pulmonary disease risk and smoking cessation changes induced by CHRNA5-A3 and CHRNB3-A6 variation in a Chinese male population. Balkan J Med Genet, 2019, 22(2): 51-58.
|
23. |
索生红, 曹生海. CYP1A1 rs4646903基因多态性与慢性阻塞性肺疾病易感性的Meta分析. 中国呼吸与危重监护杂志, 2017, 16(6): 555-560.
|
24. |
谢晓然, 鲍文华, 杨泽. 肿瘤坏死因子-α基因多态性与黑龙江省东部地区慢性阻塞性肺疾病人群易感性的研究. 中国呼吸与危重监护杂志, 2019, 18(3): 217-223.
|
25. |
Pérez-Morales R, González-Zamora A, González-Delgado MF, et al. CHRNA3 rs1051730 and CHRNA5 rs16969968 polymorphisms are associated with heavy smoking, lung cancer, and chronic obstructive pulmonary disease in a Mexican population. Ann Hum Genet, 2018, 82(6): 415-424.
|
26. |
Ganbold C, Jamiyansuren J, Tumurbaatar A, et al. The cumulative effect of gene-gene interactions between GSTM1, CHRNA3, CHRNA5 and SOD3 gene polymorphisms combined with smoking on COPD risk. Int J Chron Obstruct Pulmon Dis, 2021, 16: 2857-2868.
|
27. |
Zhou HX, Yang J, Li DX, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet, 2012, 57(11): 738-746.
|
28. |
Kaur-Knudsen D, Nordestgaard BG, Bojesen SE. CHRNA3 genotype, nicotine dependence, lung function and disease in the general population. Eur Respir J, 2012, 40(6): 1538-1544.
|
29. |
Kim WJ, Wood AM, Barker AF, et al. Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir Res, 2012, 13(1): 16.
|
30. |
Kim WJ, Oh YM, Kim TH, et al. CHRNA3 variant for lung cancer is associated with chronic obstructive pulmonary disease in Korea. Respiration, 2013, 86(2): 117-122.
|
31. |
Zhao ZX, Peng F, Zhou YM, et al. Exon sequencing identifies a novel CHRNA3-CHRNA5-CHRNB4 variant that increases the risk for chronic obstructive pulmonary disease. Respirology, 2015, 20(5): 790-798.
|
32. |
Routhier J, Pons S, Freidja ML, et al. An innate contribution of human nicotinic receptor polymorphisms to COPD-like lesions. Nat Commun, 2021, 12(1): 6384.
|
33. |
Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl), 2022, 135(5): 584-590.
|
34. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
35. |
Ayesh BM, Al-Masri R, Abed AA. CHRNA5 and CHRNA3 polymorphism and lung cancer susceptibility in Palestinian population. BMC Res Notes, 2018, 11(1): 218.
|
36. |
Shiraishi K, Kohno T, Kunitoh H, et al. Contribution of nicotine acetylcholine receptor polymorphisms to lung cancer risk in a smoking-independent manner in the Japanese. Carcinogenesis, 2009, 30(1): 65-70.
|
37. |
Sun YT, Li JY, Zheng C, et al. Study on polymorphisms in CHRNA5/CHRNA3/CHRNB4 gene cluster and the associated with the risk of non-small cell lung cancer. Oncotarget, 2017, 9(2): 2435-2444.
|
38. |
Bray MJ, Chen LS, Fox L, et al. Dissecting the genetic overlap of smoking behaviors, lung cancer, and chronic obstructive pulmonary disease: a focus on nicotinic receptors and nicotine metabolizing enzyme. Genet Epidemiol, 2020, 44(7): 748-758.
|
39. |
Young RP, Hopkins RJ, Hay BA, et al. Lung cancer gene associated with COPD: triple whammy or possible confounding effect?. Eur Respir J, 2008, 32(5): 1158-1164.
|
40. |
Yang L, Qiu FM, Lu XX, et al. Functional polymorphisms of CHRNA3 predict risks of chronic obstructive pulmonary disease and lung cancer in Chinese. PLoS One, 2012, 7(10): e46071.
|
41. |
Walsh KM, Amos CI, Wenzlaff AS, et al. Association study of nicotinic acetylcholine receptor genes identifies a novel lung cancer susceptibility locus near CHRNA1 in African-Americans. Oncotarget, 2012, 3(11): 1428-1438.
|
42. |
Liu Q, Han HJ, Wang MQ, et al. Association and cis-mQTL analysis of variants in CHRNA3-A5, CHRNA7, CHRNB2, and CHRNB4 in relation to nicotine dependence in a Chinese Han population. Transl Psychiatry, 2018, 8(1): 83.
|
43. |
Byun J, Schwartz AG, Lusk C, et al. Genome-wide association study of familial lung cancer. Carcinogenesis, 2018, 39(9): 1135-1140.
|
44. |
Wang Y, Zhang YJ, Gu CP, et al. Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9) polymorphisms are associated with NSCLC risk in a Chinese population. Med Oncol, 2014, 31(5): 932.
|
45. |
Chikova A, Bernard HU, Shchepotin IB, et al. New associations of the genetic polymorphisms in nicotinic receptor genes with the risk of lung cancer. Life Sci, 2012, 91(21-22): 1103-1108.
|
46. |
Csala I, Egervari L, Dome P, et al. The possible role of maternal bonding style and CHRNB2 gene polymorphisms in nicotine dependence and related depressive phenotype. Prog Neuropsychopharmacol Biol Psychiatry, 2015, 59: 84-90.
|
47. |
Li ZJ, Bao SZ, Xu XH, et al. Polymorphisms of CHRNA5-CHRNA3-CHRNB4 gene cluster and NSCLC risk in Chinese population. Transl Oncol, 2012, 5(6): 448-452.
|
48. |
Lee JY, Yoo SS, Kang HG, et al. A functional polymorphism in the CHRNA3 gene and risk of chronic obstructive pulmonary disease in a Korean population. J Korean Med Sci, 2012, 27(12): 1536-1540.
|
49. |
Jin G, Bae EY, Yang EY, et al. A functional polymorphism on chromosome 15q25 associated with survival of early stage non-small-cell lung cancer. J Thorac Oncol, 2012, 7(5): 808-814.
|
50. |
Mayr C. What are 3' UTRs doing?. Cold Spring Harb Perspect Biol, 2019, 11(10): a034728.
|
51. |
Tian JB, Lou J, Cai YM, et al. Risk SNP-mediated enhancer-promoter interaction drives colorectal cancer through both FADS2 and AP002754.2. Cancer Res, 2020, 80(9): 1804-1818.
|
52. |
Krüger M, Metzger C, Al‐Nawas B, et al. Cigarette smoke modulates binding of the transcription factor MZF1 to the VEGF promoter and regulates VEGF expression in dependence of genetic variation SNP 405. J Oral Pathol Med, 2020, 49(8): 780-786.
|
53. |
Hua JT, Musaddeque A, Guo HY, et al. Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell, 2018, 174(3): 564-575.
|
54. |
Chaity NI, Sultana TN, Hasan MM, et al. Nicotinic acetylcholine gene cluster CHRNA5-A3-B4 variants influence smoking status in a Bangladeshi population. Pharmacol Rep, 2021, 73(2): 574-582.
|
55. |
Li BZ, Dong JL, Yu JQ, et al. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies. BMC Med Genomics, 2020, 13(11): 191.
|
56. |
Song CH, Shi JY, Xu JR, et al. Post-transcriptional regulation of α7 nAChR expression by miR-98-5p modulates cognition and neuroinflammation in an animal model of Alzheimer's disease. FASEB J, 2021, 35(6): e21658.
|
57. |
Song J, Hao LL, Wei WZ, et al. A SNP in the 3'UTR of porcine IGF-1 gene interacts with miR-new14 to affect IGF-1 expression, proliferation and apoptosis of PK-15 cell. Domest Anim Endocrinol, 2020, 72: 106430.
|
58. |
Katayama K, Nakashima S, Ishida H, et al. Characteristics of miRNA-SNPs in healthy Japanese subjects and non-small cell lung cancer, colorectal cancer, and soft tissue sarcoma patients. Non-coding RNA Res, 2021, 6(3): 123-129.
|
59. |
Wang Y, Ye WY, Liu YY, et al. Osteoporosis genome‐wide association study variant c.3781 C> A is regulated by a novel anti‐osteogenic factor miR‐345‐5p. Hum Mutat, 2020, 41(3): 709-718.
|